Skip to main content
Log in

Bayesian Approach to Retrieving a Vertical Ozone Profile from Radiometric Measurement Data

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

We propose a technique for retrieving a vertical profile of the atmospheric ozone number density from ground-based radiometry data. The technique is based on the Bayesian approach to solving inverse problems and permits one, by allowing for measurement noise and using certain a priori information on the retrieved profile, to construct the probability distribution of the ozone number density in the entire altitude range being monitored. Using the proposed technique, we compare the retrieval results obtained for various (both well-known and suggested for the first time in this paper) methods of approximation and regularization of retrieved profiles. Model examples demonstrate that the proposed technique is capable of retrieving ozone-profile disturbances which accompany the formation of ozone holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. L. Erukhimova and E.V. Suvorov, Radiophys. Quantum Electron., 44, Nos. 1-2, 129 (2001).

    Google Scholar 

  2. K.P. Gaikovich, E.P. Kropotkina, and S.V. Solomonov, Izvestiya, Atmos. Oceanic Phys., 35, No. 1, 78 (1999).

    Google Scholar 

  3. O. S. Mocheneva, T. L. Erukhimova, and E.V. Suvorov, Radiophys. Quantum Electron., 38, No. 8, 499 (1995).

    Google Scholar 

  4. A.K. Randegger, Pure Appl. Geophys., 118, 1052 (1980).

    Google Scholar 

  5. D. J. Hofmann, S. J. Oltmans, J.M. Harris, et al., J. Geophys. Res. D, 102, No. 7, 8931 (1997).

    Google Scholar 

  6. J. W. Waters, Microsc. Opt. Tech. Lett., 4, 2 (1991).

    Google Scholar 

  7. A. N. Tikhonov, Sov. Math. Doklady, 4, 1035 (1963).

    Google Scholar 

  8. C. D. Rodgers, J. Geophys. Res. D, 95, No. 5, 5587 (1990).

    Google Scholar 

  9. J. Tamminen and E. Kyrola, J. Geophys. Res. D, 106, No. 13, 14377 (2001).

    Google Scholar 

  10. V.F. Turchin, V.P. Kozlov, and M. S. Malkevich, Sov. Phys. - Uspekhi, 13, 681 (1971).

    Google Scholar 

  11. C.H. Townes and A. L. Schawlow, Microwave Spectroscopy, McGraw-Hill, New York (1955).

    Google Scholar 

  12. W.H. Press, S. A. Teukolsky, W.T. Vetterling, and B. P. Flannery, in: Numerical Recipes, Cambridge Univ. Press (1989), p. 499.

  13. K.P. Gaikovich, Digest of IGARSS’94, Pasadena, USA, August 8-12, 1994. Vol. 4, p. 1901.

    Google Scholar 

  14. K. Hornik, M. Stinchcombe, and H. White, Neural Networks, 2, 359 (1989).

    Google Scholar 

  15. B. Nardi, W. Bellon, L. D. Oolman, and T. Deshler, Geophys. Res. Lett., 26, No. 6, 723 (1999).

    Google Scholar 

  16. W.R. Gilks and P. Wild, Appl. Statistics, 41, No. 2, 337 (1992).

    Google Scholar 

  17. W.K. Hasting, Biometrica, 57, 97 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molkov, Y.I., Mukhin, D.N., Suvorov, E.V. et al. Bayesian Approach to Retrieving a Vertical Ozone Profile from Radiometric Measurement Data. Radiophysics and Quantum Electronics 46, 675–685 (2003). https://doi.org/10.1023/B:RAQE.0000024996.24122.05

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RAQE.0000024996.24122.05

Keywords

Navigation