Skip to main content
Log in

New Approaches in Broadband Fiber-Optical Interferometry for Optical Coherent Tomography

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

We have developed new methods of IR ultrabroadband interferometry for increasing the limiting capabilities of optical coherent tomography (OCT). In particular, this permitted us to create an optical coherent microscope combining the principles of confocal microscopy and OCT. To increase the longitudinal resolution, we synthesized an ultrabroadband optical spectrum based on two superluminescent diodes with separated radiation spectra. The resulting longitudinal resolution was 3.4 μm and the transverse resolution was 3.9 μm. Images of the inner structure of biological tissues are obtained at the cellular level. Experimental results of a study of biological tissue by the cross-polarization OCT are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science, 254, 1178 (1991).

    Google Scholar 

  2. V. M. Gelikonov, G. V. Gelikonov, N. D. Gladkova, R. V. Kuranov, N. K. Nikulin, G. A. Petrova, V. V. Pochinko, K. I. Pravdenko, A. M. Sergeev, F. I. Feldshtein, Ya. I. Khanin, and D. V. Shabanov, JETP Lett., 61, 158 (1995).

    Google Scholar 

  3. A. F. Fercher, J. Biomed. Opt., 1, 157 (1996).

    Google Scholar 

  4. J. M. Schmitt, IEEE J. Selected Topics Quantum Electron., 5, 1205 (1999).

    Google Scholar 

  5. J. G. Fujimoto, W. Drexler, U. Morgner, F. Kartner, and E. Ippen, Opt. Photon. News, 11, 24 (2000).

    Google Scholar 

  6. V. V. Tuchin, SPIE Proc., Washington (2000).

  7. A. M. Sergeev, L. S. Dolin, and D. H. Reitze, Opt. Photon. News, 12, 28 (2001).

    Google Scholar 

  8. B. E. Bouma and G. J. Tearney, Marcel Dekker, Inc., New York (2002), p. 741.

  9. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, Opt. Lett., 19, 590 (1994).

    Google Scholar 

  10. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, Opt. Lett., 24, 1221 (1999).

    Google Scholar 

  11. R. V. Kuranov, V. V. Sapozhnikova, I. V. Turchin, E. V. Zagainova, V. M. Gelikonov, V. A. Kamensky, L. B. Snopova, and N. N. Prodanetz, Opt. Express, 10, 707 (2002).

    Google Scholar 

  12. J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, and J. S. Nelson, IEEE J. Selected Topics Quantum Electron., 5, 1200 (1999).

    Google Scholar 

  13. J. M. Schmitt and S. H. Xiang, Opt. Lett., 23, 1060 (1998).

    Google Scholar 

  14. J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, Jr., IEEE J. Selected Topics Quantum Electron., 2, 1017 (1996).

    Google Scholar 

  15. A. M. Kovalevicz, T. Ko, I. Hartl, J. G. Fujimoto, M. Pollnau, and R. P. Salathe, Opt. Express, 10, 349 (2002).

    Google Scholar 

  16. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, Opt. Lett., 26, 608 (2001).

    Google Scholar 

  17. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russel, M. Vetterlein, and E. Scherzer, Opt. Lett., 27, 1800 (2002).

    Google Scholar 

  18. J. M. Schmitt, S. L. Lee, and K. M. Yung, Opt. Commun., 142, 203 (1997).

    Google Scholar 

  19. A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler, and A. F. Fercher, J. Biomed. Opt., 3, 45 (1998).

    Google Scholar 

  20. F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, J. Modern Opt., 46, 541 (1999).

    Google Scholar 

  21. A. Knuttel and M. Boehlau-Godau, J. Biomed. Opt., 5, 83 (2000).

    Google Scholar 

  22. F. I. Feldshtein, V. M. Gelikonov, G. V. Gelikonov, N. D. Gladkova, V. I. Leonov, A. M. Sergeev, and Ya. I. Khanin, USA Patent No. 583564 (1998).

  23. V. K. Batovrin, I. A. Garmash, V. M. Gelikonov, G. V. Gelikonov, A. V. Lyubarsky, A. G. Plyavenek, S. A. Safin, A. T. Semenov, V. R. Shidlovsky. M. V. Shramenko, and S. D. Yakubovich, Quantum Electron., 26, 109 (1996).

    Google Scholar 

  24. V. M. Gelikonov and G. V. Gelikonov, Preprint No. 586, Inst. Appl. Phys. Press, Nizhny Novgorod (2001).

  25. S. L. Jacques, J. R. Roman, and K. Lee, Laser Sur. Med., 26, 119 (2000).

    Google Scholar 

  26. K. Schoenenberger, B. W. Colston, Jr., D. J. Maitland, L. B. DaSilva, and M. J. Everett, Appl. Opt., 37, 6026 (1998).

    Google Scholar 

  27. V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, A. M. Sergeev, and F. I. Feldshtein, “The optical interferometer (variants),” Russian Federation Patent No. 2169347 (2001).

  28. G. L. Abbas, V. W. S. Chan, and T. K. Yee, Opt. Lett., 8, 419 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelikonov, V.M., Gelikonov, G.V., Ksenofontov, S.Y. et al. New Approaches in Broadband Fiber-Optical Interferometry for Optical Coherent Tomography. Radiophysics and Quantum Electronics 46, 550–564 (2003). https://doi.org/10.1023/B:RAQE.0000019870.95905.95

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RAQE.0000019870.95905.95

Keywords

Navigation