Skip to main content
Log in

Nonlinear Parabolic Equation and Extreme Waves on the Sea Surface

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

Nearly 40 years have passed since V. I. Talanov discovered the nonlinear parabolic equation which played an important role in the nonlinear optics. It was very quickly understood that this equation could also be adapted for nonstationary wave packets of different physical nature and of any dimension. Under the later name of the nonlinear (cubic) Schrödinger equation, it became a fundamental equation in the theory of weakly nonlinear wave packets in media with strong dispersion. The article is devoted to only one application of the nonlinear Schrödinger equation in the theory of the so-called freak waves on the sea surface. In the last five years a great boom has occurred in the research of extreme waves on the water, for which the nonlinear parabolic equation played an important role in the understanding of physical mechanisms of the freak-wave phenomenon. More accurate, preferably numerical, models of waves on a water with more comprehensive account of the nonlinearity and dispersion come on the spot today, and many results of weakly nonlinear models are already corrected quantitatively. Nevertheless, sophisticated models do not bring new physical concepts. Hence, their description on the basis of the nonlinear parabolic equation (nonlinear Schrödinger equation), performed in this paper, seems very attractive in view of their possible applications in the wave-motion physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. P. Pitaevskii, Sov. Phys. JETP, 13, 451 (1961).

    Google Scholar 

  2. V. I. Talanov, Sov. Phys. JETP Lett., 2, 138 (1965).

    Google Scholar 

  3. P. L. Kelley, Phys. Rev. Lett., 15, No. 26, 1005 (1965).

    Google Scholar 

  4. L. A. Ostrovskii, Sov. Phys. JETP, 24, 797 (1967).

    Google Scholar 

  5. D. J. Benney and A. C. Newell, J. Math. Phys. (Stud. Appl. Math.), 46, 133 (1967).

    Google Scholar 

  6. M. I. Rabinovich and D. I. Trubetskov, Oscillations and Waves in Linear and Nonlinear Systems, Kluwer Academic Publ. (1989).

  7. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press (1991).

  8. S. N. Vlasov and V. I. Talanov, Self-Focusing of Waves [in Russian], Inst. Appl. Phys. Press, Nizhny Novgorod (1997).

  9. V. E. Zakharov, J. Appl. Mech. Tech. Phys., No. 2, 190 (1968).

  10. H. Hasimoto and J. Ono, J. Phys. Soc. Japan, 33, 805 (1972).

    Google Scholar 

  11. A. Davey, J. Fluid Mech., 53, 769 (1972).

    Google Scholar 

  12. T. B. Benjamin and J. E. Feir, J. Fluid Mech., 27, No. 3, 417 (1967).

    Google Scholar 

  13. S. E. Sand, N. E. Ottesen Hansen, P. Klinting, O. T. Gudmestad, and M. J. Sterndorff, in: O. Torum and O. T. Gudmestad, eds., Water Wave Kinematics, Kluwer Academic Publ. (1990), p. 535.

  14. I. V. Lavrenov, Mathematical Modelling of Wind Roughness in the Spatially Inhomogeneous Ocean [in Russian], Gidrometeoizdat (1998).

  15. S. Haver and O. J. Andersen, in: Proc. 10th Conf. ISOPE (2000), p. 123.

  16. N. Mori, P. C. Liu, and N. Yasuda, Ocean Eng., 29, 1399 (2002).

    Google Scholar 

  17. A. K. Magnusson, M. A. Donelan, and W. M. Drennan, Coastal Eng., 36, 147 (1999).

    Google Scholar 

  18. K. B. Dysthe and K. Trulsen, Physica Scripta T, 82, 48 (1999).

    Google Scholar 

  19. K. L. Henderson, D. H. Peregrine, and J. W. Dold, Wave Motion, 29, 341 (1999).

    Google Scholar 

  20. A. R. Osborne, M. Onorato, and M. Serio, Phys. Lett. A, 275, 386 (2000).

    Google Scholar 

  21. E. N. Pelinovsky and C. Kharif, Izv. Akad. Inzhen. Nauk RF, 1, 50 (2000).

    Google Scholar 

  22. M. G. Brown and A. Jensen, J. Geophys. Res., 106, 16917 (2001).

    Google Scholar 

  23. G. Clauss, Appl. Ocean Res., 24, 147 (2002).

    Google Scholar 

  24. V. E. Zakharov, J. Appl. Mech. Tech. Phys., No. 2, 190 (1968).

  25. M. J. Ablowitz, Kaup D. J., A. C. Newell, and H. Segur, Stud. Appl. Math., 53, 249 (1974).

    Google Scholar 

  26. S. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: the Inverse Scattering Method, Consultants Bureau, New York (1984).

    Google Scholar 

  27. A. V. Slunyaev, “Dynamics of large-amplitude internal and surface waves in the ocean,” Ph.D. Thesis [in Russian], Nizhny Novgorod (2002).

  28. D. H. Peregrine, J. Austral. Math. Soc., Ser. B, 25, 16 (1983).

    Google Scholar 

  29. A. Calini and C. M. Schober, Phys. Lett. A, 298, 335 (2002).

    Google Scholar 

  30. M. J. Ablowitz, J. Hammark, D. Henderson, and C. M. Schober, Physica D, 152-153, 416 (2001).

    Google Scholar 

  31. I. E. Alber, Proc. Roy. Soc. Lond. A, 363, 525 (1978).

    Google Scholar 

  32. M. Onorato, A. R. Osborne, and M. Serio, Phys. Fluids, 14, No. 4, L25 (2002).

    Google Scholar 

  33. M. Onorato, A. Osborne, M. Serio, and S. Bertone, Phys. Rev. Lett., 86, No. 25, 5831 (2001).

    Google Scholar 

  34. J. C. Bronski and J. N. Kutz, Phys. Lett. A, 254, 325 (1999).

    Google Scholar 

  35. M. Desaix, Phys. Rev. Lett., 90, No. 1, article No. 013901 (2003).

  36. E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. M. Serkin, Pis'ma Zh. Tekh. Fiz., 12, No. 12, 756 (1986).

    Google Scholar 

  37. C.-M. Chen and P. L. Kelley, J. Opt. Soc. Am. B, 19, No. 9, 1961 (2002).

    Google Scholar 

  38. C. Kharif, E. Pelinovsky, T. Talipova, and A. Slunyaev, JETP Lett., 73, 190 (2001).

    Google Scholar 

  39. M. J. Ablowitz and H. Segur, J. Fluid Mech., 92, 691 (1979).

    Google Scholar 

  40. A. G. Litvak, V. A. Mironov, and É. M. Sher, JETP, 91, 1268 (2000).

    Google Scholar 

  41. W. J. D. Bateman, C. Swan, and P. H. Taylor, J. Comput. Phys., 174, 277 (2001).

    Google Scholar 

  42. A. Slunyaev, C. Kharif, E. Pelinovsky, and T. Talipova, Physica D, 173, 77 (2002).

    Google Scholar 

  43. G. Lawton, New Scientist, 170, 28 (2001).

    Google Scholar 

  44. K. Trulsen, in: Proc. Workshop “Rogue Waves 2000” (2000), p. 265.

  45. A. G. Litvak and V. I. Talanov, Radiophys. Quantum Electron., 10, No. 4, 296 (1967).

    Google Scholar 

  46. D. Clammond and J. Grue, C. R. Mecanique, 330, 575 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelinovsky, E.N., Slunyaev, A.V., Talipova, T.G. et al. Nonlinear Parabolic Equation and Extreme Waves on the Sea Surface. Radiophysics and Quantum Electronics 46, 451–463 (2003). https://doi.org/10.1023/B:RAQE.0000019863.50302.35

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RAQE.0000019863.50302.35

Keywords

Navigation