Skip to main content
Log in

Visualization of the Quantum Fourier Transform Using a Quantum Computer Simulator

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum Fourier transform (QFT) is a key subroutine of quantum algorithms for factoring and simulation and is the heart of the hidden-subgroup problem, the solution of which is expected to lead to the development of new quantum algorithms. The QFT acts on the Hilbert space and alters the quantum mechanical phases and probability amplitudes. Unlike its classical counterpart its schematic representation and visualization are very dif.cult. The aim of this work is to develop a schematic representation and visualization of the QFT by running it on a quantum computer simulator which has been constructed in the framework of this research. Base states, superpositions of base states and entangled states are transformed and the corresponding schematic representations are presented. The visualization of the QFT presented here and the quantum computer simulator developed for this purpose may become a useful tool for introducing the QFT to students and researches without a strong background in quantum mechanics or Fourier analysis.

PACS: 03.67.-a, 03.67.Lx

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. W. Shor, Siam J. Comp. 26, 1484 (1997).

    Google Scholar 

  2. L. Grover, ACM Symp. Theory Comp. 1, 212 (1996).

    Google Scholar 

  3. S. Lloyd,Science 273, 1073 (1996).

    Google Scholar 

  4. R. Jozsa, Comp. Sci. Eng. 3, 34 (2001).

    Google Scholar 

  5. A. O. Pittenger,An Introduction to Quantum Computing Algorithms (Birkhauser, Boston, 1999).

  6. Y. S. Weinstein, M. A. Pravia, E. M. Fortunato, S. Lloyd, and D. G. Cory, Phys. Rev. Lett. 86, 1889 (2001).

    Google Scholar 

  7. A. Klappenecker and M. Roettler, Phys. Rev. A 67, 010302-1 (2003).

    Google Scholar 

  8. D. A. Meyer, Comp. Phys. Comm. 146, 295 (2002).

    Google Scholar 

  9. G. Ortiz, E. Knill, and J. E. Gubernatis, Nuc. Phys. B (Proceedings Supplements) 106‐107, 151 (2002).

    Google Scholar 

  10. J. Yepez,Comp. Phys. Comm. 146, 277 (2002).

    Google Scholar 

  11. R. Schutzhold, (2002). LANL quant-ph/0208063.

  12. C. A. Trugenberger, Quan. Inf. Proc. 1, 471 (2002).

    Google Scholar 

  13. C. A. Trugenberger, Phys. Rev. Lett. 89, 277903-1 (2002).

    Google Scholar 

  14. J. A. Sidles, (2002). LANL quant-ph/0211108v2.

  15. A. Ekert and R. Jozsa, Rev. Mod. Phys. 68, 733 (1996).

    Google Scholar 

  16. R. Oru´ s, J. I. Latorre, and M. A. Marti´ n-Delgado, Quant. Inf. Proc. 1, 283 (2002).

    Google Scholar 

  17. D. Deutsch, Proc. Roy. Soc. Lond. A400, 97 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karafyllidis, I.G. Visualization of the Quantum Fourier Transform Using a Quantum Computer Simulator. Quantum Information Processing 2, 271–288 (2003). https://doi.org/10.1023/B:QINP.0000020076.36114.13

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:QINP.0000020076.36114.13

Navigation