Skip to main content
Log in

Capillary Transport of Low-Viscosity Liquids in Porous Metallic Materials under the Action of Gravitational Force

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

Proceeding from model considerations about the microstructure of a porous body and the quantitative characteristics that govern it in structural regularity criteria analytical solutions are suggested for describing capillary transport of a wetting liquid, including movement of it against gravitational force considering the possibility of partial draining of pore channels. Results of experimental studies of the rate of capillary impregnation and the rise of distilled water, ethanol, and acetone in highly porous specimens prepared from powders of copper, bronze, chromium-nickel steels, titanium and its alloys, discrete fibers of copper and titanium of different diameter, and also grids of different interweaving, are analyzed. Extensive possibilities are demonstrated for controlling capillary effects in porous structures of different construction using technological methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. A. Vityaz, V. K. Sheleg, V. M. Kaptsevich, et al., “Study of capillary properties of permeable materials made from bronze powder,” Poroshk. Metall., No. 9, 58–62 (1983).

    Google Scholar 

  2. V. M. Kaptsevich, V. K. Sheleg, V. V. Savich, et al., “Effect of particle morphology for starting powders on porous material properties,” Poroshk. Metall., No. 4, 62–68 (1990).

    Google Scholar 

  3. A. G. Kostornov, N. V. Manukyan, L. G. Galstyan, and S. M. Agayan, “Hydraulic characteristics of porous powder materials based on titanium,” Poroshk. Metall., No. 8, 53–56 (1986).

    Google Scholar 

  4. GOST 26849–86, Powder materials. Method for Determining Pore Size, Intr. 01.01.86

  5. A. S. Berkman and I. G. Mel'nikova, Porous Permeable Ceramics [in Russian], Stroizdat, Leningrad (1969).

    Google Scholar 

  6. A. G. Kostornov, “Quantitative criteria for the porous structure of permeable fibrous materials,” Poroshk. Metall., No. 4, 80–87 (1977).

    Google Scholar 

  7. A. G. Kostornov, “Permeable material porous structure parameters. I. Theoretical requisites and model studies,” Poroshk. Metall., No. 4, 34–40 (1978).

    Google Scholar 

  8. A. G. Kostornov, “Permeable material porous structure parameters. II. Materials of nonmetallic fibers,” Poroshk. Metall., No. 5, 63–68 (1978).

    Google Scholar 

  9. A. G. Kostornov, Permeable Metal Fiber Materials [in Russian], Tekhnika, Kiev (1983).

    Google Scholar 

  10. A. G. Kostornov, N. É. Skrynskaya, and M. Kh. Akhmedov, “Features of capillary transport in porous materials made of titanium alloy VT6 fibers,” Poroshk. Metall., Nos. 1–2, 67–74 (1997).

    Google Scholar 

  11. V. V. Skorokhod, “Some physical properties of highly porous bodies,” Poroshk. Metall., No. 6, 33–38 (1967).

    Google Scholar 

  12. A. G. Kostornov, “Analysis of heat and mass transfer in porous structures of heat pipes. I. Theoretical ideas,” Poroshk. Metall., No. 11, 54–59 (1984).

    Google Scholar 

  13. A. G. Kostornov and L. G. Galstyan, “Generalized characteristics of the porous structure of fibrous bodies,” Poroshk. Metall., No. 7, 62–69 (1983).

    Google Scholar 

  14. S. V. Belov, Porous Metals in Engineering [in Russian], Mashnostroenie, Moscow (1976).

    Google Scholar 

  15. A. K. Mitropol'skii, Techniques of Statistical Computation [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  16. A. G. Kostornov, “Heat and mass transfer in porous capillary structures of heat pipes. II. Analysis of the operating capacity of porous capillary structures (CS),” Poroshk. Metall., No. 5, 63–68 (1984).

    Google Scholar 

  17. L. E. Lunin, A. G. Kostornov, A. S. Glushchenko, and G. A. Kolesnichenko, “Determination of pore dimensions in permeable metal materials by the method of liquid expulsion,” Poroshk. Metall., No. 9, 38–42 (1987).

    Google Scholar 

  18. P. Dan and D. Rei, Heat Pipes [Russian translation], Énergiya, Moscow (1979).

    Google Scholar 

  19. A. G. Kostornov, N. É. Skrynskaya, and S. M. Agayan, “Porous structure and features of capillary transport in permeable powder materials,” Poroshk. Metall., No. 5, 42–47 (1990).

    Google Scholar 

  20. P. A. Vityaz, V. K. Sheleg, V. M. Kaptsevich, et al., “Properties the capillary structure of copper powder,” Poroshk. Metall., No. 8, 86–90 (1995).

    Google Scholar 

  21. Yu. F. Maidanik and G. V. Kuskov, “Titanium porous materials for capillary structures of heat pipes,” Poroshk. Metall., No. 1, 36–38 (1983).

    Google Scholar 

  22. V. K. Sheleg and V. V. Savich, “Effect of manufacturing technology for porous powder materials on their capillary properties (Review),” Poroshk. Metall., Nos. 5–6, 30–39 (1996).

    Google Scholar 

  23. P. A. Vityaz, V. K. Sheleg, and V. M. Kaptsevich, “Prediction of properties of sintered materials with variable porosity through a section based on a bidispersed model,” in: Powder Metallurgy, Vysh. Shkola, Minsk (1980).

    Google Scholar 

  24. V. M. Kaptsevich, L. P. Pilinevich, A. A. Gurevich, et al., “Optimization of pore distribution parameters in permeable powder materials for cleaning polymer melts,” Poroshk. Metall., No. 9, 52–55 (1991).

    Google Scholar 

  25. V. K. Sheleg, V. M. Kaptsevich, A. E. Galkin, et al., “Features of forming a variable pore distribution for porous powder materials in a pseudo-liquified layer,” Poroshk. Metall., No. 12, 20–26 (1991).

    Google Scholar 

  26. V. M. Kaptsevich, R. A. Kusin, and A. A. Gurevich, Creation of Effective Porous Powder Materials by Plastic Deformation: Review of Information [in Russian], BelNIINTI, Minsk (1985).

    Google Scholar 

  27. P. A. Vityaz, V. K. Sheleg, V. M. Aleksandrov, et al., “Porous powder materials with lyophilic additions,” Poroshk. Metall., No. 11, 89–93 (1985).

    Google Scholar 

  28. V. K. Sheleg, “Increase in the efficiency of using capillary-porous powder materials. I. Parameters of KPMM efficiency,” Poroshk. Metall., No. 3, 53–55 (1991).

    Google Scholar 

  29. V. K. Sheleg, “Increase in the efficiency of using capillary-porous powder materials. II. Materials with established capillary flow,” Poroshk. Metall., No. 5, 64–69 (1991).

    Google Scholar 

  30. V. K. Sheleg, “Increase in the efficiency of using capillary-porous powder materials. III. Infiltrating materials,” Poroshk. Metall., No. 7, 67–70 (1991).

    Google Scholar 

  31. S. V. Denisevich and V. K. Sheleg, “Capillary-porous structure of heat pipes prepared by cathodic deposition,” Powder Metallurgy, No. 9, Vysh. Shkola, Minsk (1985).

    Google Scholar 

  32. M. G. Semena, A. G. Kostornov, A. N. Gershuni, and A. L. Moroz, “Study of the characteristics of capillary absorption of heat pipe cores,” Inzh.-Fiz. Zhurn., 27, No. 6, 1009–1014 (1974).

    Google Scholar 

  33. A. G. Kostornov and M. Kh. Akhmedov, “Structural and hydraulic characteristics of porous materials made from titanium alloy VT6 fibers,” Poroshk. Metall., Nos. 5–6, 85–89 (1994).

    Google Scholar 

  34. L. E. Lunin, A. G. Kostornov, and N. P. Pavlenko, “Uniformity of the porous structure of permeable powder materials,” Poroshk. Metall., No. 5, 47–51 (1986).

    Google Scholar 

  35. A. G. Kostornov, L. G. Galstyan, and N. E. Fedorova, “Free and contact surface in fibrous porous materials,” Poroshk. Metall., No. 5, 61–67 (1983).

    Google Scholar 

  36. S. V. Belov, A. A. Ivanchuk, D. M. Karpinos, et al., “Kinetics of liquid impregnation for porous cellular materials,” Poroshk. Metall., No. 5, 63–65 (1981).

    Google Scholar 

  37. A. G. Kostornov, N. É. Skrynskaya, M. I. Cherkasov, and A. L. Moroz, “Effect of thermal oxidation treatment regime on features of the capillary transport in copper permeable materials of fibrous structure,” Poroshk. Metall., Nos. 1–2, 85–89 (1995).

    Google Scholar 

  38. V. V. Panichkina and I. V. Uvarova, Methods for Controlling the Fineness and Specific Surface of Metal Powders [in Russian], Nauk. Dumka, Kiev (1973).

    Google Scholar 

  39. J. Benaire (ed.), Oxidation of Metals [Russian translation], Metallurgiya, Moscow (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostornov, A.G. Capillary Transport of Low-Viscosity Liquids in Porous Metallic Materials under the Action of Gravitational Force. Powder Metallurgy and Metal Ceramics 42, 447–459 (2003). https://doi.org/10.1023/B:PMMC.0000013216.33150.fb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PMMC.0000013216.33150.fb

Navigation