Skip to main content
Log in

Structure and Mechanical Properties of Porous Titanosilicon Carbide Ti3SiC2

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

The following test methods have been applied: four-point bending, uniaxial compression, hardness measurement, and fractography to establish the regularities and mechanisms in deformation, work hardening, and failure in the temperature range 20-1300°C for a nanolaminate representative: porous titanosilicon carbide Ti3SiC2 made by solid-state reactive sintering. The temperature and deformation bounds to its existence in the plastic state have been established. A model is proposed for the deformation and failure. The results are compared with those for the compact material of the same stoichiometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. W. Barsoum, “The M N + 1AXN phases: A new class of solids. Thermodynamically stable nanolaminates, ” Prog. Solid St. Chem., 28, 201–281 (2000).

    Google Scholar 

  2. M. W. Barsoum, T. El-Raghy, and M. Radovic, “Ti3SiC2: A layered machinable ductile carbide, ” Interceram., 49, No. 4, 226–233 (2000).

    Google Scholar 

  3. W. Jeitschko, H. Nowotny, and F. Benesovsky, “Kohlenstoffhaltige ternare Verbindungen (H-Phase), ” Monatsch. Chem., 94, 672 (1963).

    Google Scholar 

  4. W. Jeitschko and H. Nowotny, “Die Kristallstructur von Ti3SiC2: Ein Neuer Komplexcarbid-Type, ” Monatsch Chem., 98, 329–337 (1967).

    Google Scholar 

  5. H. Nowotny, “Struktuchemie einiger Verbindungen der Ubergangsmetalle mit den Elementen C, Si, Ge, Sn, ” Prog. Solid State Chem., 2, 27 (1970).

    Google Scholar 

  6. R. Pampuch, J. Lis, L. Stobierski, and M. Tymkiewicz, “Solid combustion synthesis of Ti3SiC2, ” J. Eur. Ceram. Soc., 5, 283 (1989).

    Google Scholar 

  7. J. Lis, R. Pampuch, J. Piekarczyk, and L. Stobierski, “New ceramics based on Ti3SiC2, ” Ceramics Int., 19, 219 (1993).

    Google Scholar 

  8. T. Okano, T. Yano, and T. Iseki, “Synthesis and mechanical properties of Ti3SiC2, ” Trans. Met. Soc. Jap., 14A, 597 (1993).

    Google Scholar 

  9. J. F. Li, W. Pan, F. Sato, and R. Watanabe, “Mechanical properties of polycrystalline Ti3SiC2 at ambient and elevated temperatures, ” Acta Mater., 49, 937–945 (2001).

    Google Scholar 

  10. A. N. Demidik, I. I. Ivanova, and O. M. Ivasishin, A Method of Making Components from Titanium Aluminide, Pat. 12529A Ukraine, Publ. 1997.

  11. V. I. Trefilov, V. F. Moiseev, E. P. Pechkovskii, et al., Work Hardening and Failure in Polycrystalline Metals [in Russian], Nauk. Dumka, Kiev (1989).

    Google Scholar 

  12. S. Firstov and Yu. Podrezov, “Optimization of mechanical properties of porous materials, ” Powder Metall Progr., No. 1, 5–18 (2001).

    Google Scholar 

  13. P. I. Polukhin, S. S. Gorelik, and V. K. Vorontsov, The Physical Principles of Plastic Strain [in Russian], Metallurgiya, Moscow (1982).

    Google Scholar 

  14. V. I. Trefilov, Yu. V. Mil'man, and S. A. Firstov, The Physical Principles of Strength in Refractory Metals [in Russian], Nauk. Dumka, Kiev (1975).

    Google Scholar 

  15. V. A. Borisenko, Hardness and Strength in Refractory Materials at High Temperatures [in Russian], Nauk. Dumka, Kiev (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éngels P. Pechkovskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pechkovskii, É.P., Firstov, S.A. Structure and Mechanical Properties of Porous Titanosilicon Carbide Ti3SiC2 . Powder Metallurgy and Metal Ceramics 42, 424–432 (2003). https://doi.org/10.1023/B:PMMC.0000004164.63420.14

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PMMC.0000004164.63420.14

Navigation