Skip to main content
Log in

Making Calcium Phosphate Biomaterials

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

Publications and patents over recent decades on the use of hydrogenating alloys as an active material for nickel-metal hydride batteries that have successfully replaced ecologically harmful nickel-cadmium batteries are reviewed. It is shown that the main direction of scientific research into the preparation of alloys with a high electrochemical capacity, cycle life, and chemical activity towards hydrogen, is the development of multicomponent alloys by alloying whose principles are formulated in this communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. J. G. Willems and K. H. J. Bushow “From Permanent magnets to rechargeable hydride electrodes, ” J. Less-Common. Met., 29, No. 1, 13–30 (1987).

    Google Scholar 

  2. M. F. Bittner and C. C. Badcock, “Electrochemical utilization of metal hydrides, ” J. Electrochem. Soc., 130, No. 5, 193–198 (1983).

    Google Scholar 

  3. S. Wakao, H. Sawa, and J. Furukawa, “Effect of partial substitution and anodic oxidation treatment of Zr-V-Ni alloys on electrochemical properties, ” J. Less-Common Met., 172–174, No.1–2, 1219–1226 (1991).

    Google Scholar 

  4. H. C. Siegmann, L. Schlapbach, and C. R. Brundie, “Self-restoring of the active surface in the sponge LaNi5, ” Phys. Rev. Lett., 40, No. 14, 972–975 (1978).

    Google Scholar 

  5. F. Stucki and L. Schlapbach, “Magnetic properties of LaNi5, FeTi, Mg2Ni and their hydrides, ” J. Less-Common Met., 74, No. 1, 143–151 (1980).

    Google Scholar 

  6. L. Schlapbach, A. Seiler, F. Stucki, et al., “Surface effects and formation of metal hydrides, ” J. Less-Common Met., 73, No. 1, 145–160 (1980).

    Google Scholar 

  7. G. D. Sandrock and P. D. Goodell, “Surface poisoning of LaNi5 and FeTi, and (Fe, Mn)Ti by O2, CO and H2O, ” J. Less-Common. Met., 74, No. 1, 164–168 (1980).

    Google Scholar 

  8. Yu Xin-nan and L. Schlapbach, “Surface properties of chemically prepared LaNi5 and its oxidation and poisoning by O2 and CO, ” Int. Hydrogen Energy, 13, No. 7, 429–432 (1988).

    Google Scholar 

  9. Jeog Iu Han and L. Jai Yjung, “An investigation of the intrinsic degradation mechanism of LaNi5 by thermal desorption technique, ” Int. Hydrogen Energy, 13, No. 7, 577–582 (1988).

    Google Scholar 

  10. R. L. Cohen, K. W. West, and J. H. Wernik, “Degradation of LaNi5 by temperature-induced cycling, ” J. Less-Common. Met., 73, No. 2, 273–279 (1980).

    Google Scholar 

  11. R. L. Cohen and K. W. West, “Intrinsic cycling degradation in LaNi5 and annealing procedures for reforming the material, ” J. Less-Common. Met., 95, No. 1, 17–23 (183).

  12. P. D. Goodell, “Stability of rechargeable hydriding alloys during extended cycling, ” J. Less-Common. Met., 99, No. 1, 9–14 (1984).

    Google Scholar 

  13. A. H. Boonstra, G. J. M. Lippits, and T. N. M. Beranrds, “Degradation processes in a LaNi5 electrode, ” J. Less-Common. Met., 155, No. 1, 119–135 (1989).

    Google Scholar 

  14. A. H. Boonstra, T. N. M. Bernards, and G. J. M. Lippits, “The influence of oxidation upon the storage capacity of LaNi5 electrodes, ” J. Less-Common. Met., 159, No. 1–2, 327–336 (1990).

    Google Scholar 

  15. A. H. Boonstra, T. N. M. Bernards, and G. J. M. Lippits, “The influence of the treatment of powder on the resulting properties of LaNi5 electrodes, ” J. Less-Common. Met., 162, No. 2, 245–255 (1990).

    Google Scholar 

  16. H. H. Van Mal, K. H. G. Bushow, and F. A. Kuijpers, “Hydrogen absorption and magnetic properties of LaCo5x Ni5–5x compounds, ” J. Less-Common. Met., 32, No. 2, 289–291 (1973).

    Google Scholar 

  17. T. Sakai, K. Oguro, H. Miyamura, et al., “Some factors effected the cycle lives of LiNi5-based alloy electrodes of hydrogen batteries, ” J. Less-Common. Met., 161, No. 2, 193–202 (1990).

    Google Scholar 

  18. T. Sakai, H. Miyamura, N. Kuriyama, et al., “The influence of small amounts of added elements on various anode performance characteristics for LaNi2.5Co2.5-based alloys, ” J. Less-Common. Met., 159, No. 1–2, 127–139 (1990)

    Google Scholar 

  19. T. Sakai, T. Hazama, H. Miyamura, et al., “Rare-earth based alloy electrodes for a nickel-metal hydride battery, ” J. Less-Common. Met., 172–174, No. 1–2, 1175–1184 (1991).

    Google Scholar 

  20. T. Sakai, H. Miyamura, M. Kuriyama, et al., “Metal hydride anodes for nickel-hydrogen secondary battery, ” J. Less-Common. Met., 137, No. 3, 795–799 (1990).

    Google Scholar 

  21. M. Ikoma, Production of Hydrogen Occluding Electrode, Pat. 60–140657 JP, Publ. November 29 (1985).

  22. M. Ikoma, Battery Electrode, Pat. 61–203561 JP, Publ. March 2 (1987).

  23. M. Ikoma, Negative Electrode for Storage Battery, Pat. 60–97550A JP, Publ. October 4 (1985).

  24. M. Ikoma, H. Kawano, I. Mitsumoto, and M. Yanagihara, Sealed Storage Battery and Method for Making Its Electrode, Pat. 0271043 EP, Publ. November 11 (1988).

  25. I. Osumi, H. Suzuki, A. Kato, and H. Nakane, “Hydrogen absorption-desorption characteristics of mischmetal-nickel-silicon alloys, ” J. Less-Common. Met., 84, No. 1, 99–106 (1982).

    Google Scholar 

  26. I. Osumi, H. Suzuki, A. Kato, and H. Nakane, “Hydrogen absorption-desorption characteristics of mischmetal-Ni-Cr-Mn alloys, ” J. Less-Common. Met., 79, No. 2, 207–215 (1981).

    Google Scholar 

  27. I. Miyake, “Hydrogen absorption-desorption characteristics of misch-metal-aluminum alloys, ” J. Less-Common. Met., 66, No. 1, 65–75 (1979).

    Google Scholar 

  28. Yong-Quan Lei, Zhou-Peng Li, Chang-Pin Chen, et al., “The cyclic behavior of misch-metal-nickel-based metal hydride electrodes and the effect of copperplating on the performance, ” J. Less-Common. Met., 172–174, No. 1–2, 1265–1272 (1991).

    Google Scholar 

  29. M. Kanda and Y. Sato, Sealed Metal-Oxide Hydrogen Battery, Pat. 4605603 USA, Publ. July 11 (1985).

  30. M. Kanda, Metal oxide Hydrogen Battery, Pat. 60–130054 JP, Publ. November 15 (1985).

  31. E. Yagasaki, M. Kanda, K. Mitsuyasu, and Y. Sato, Rechargeable Electrochemical Cell with Negative Electrode Comprising Hydrogen Absorption Alloy Including Rare-Earth Component, Pat. 4696873 USA, Publ. February 29 (1987).

  32. M. Kanda. Y. Sato, E. Slincho, and K. Mitsuyasu, Sealed Metal Oxide-Hydrogen Storage Cell, Pat. 4621034 USA, Publ. November 4 (1986).

  33. M. Kanda, Hydrogen Occlusion Alloy Electrode, Pat. 61–185863 JP, Publ. August 15 (1988).

  34. G. I. Douglas and D. O. Northwood, “Storing hydrogen in AB2 Laves type compounds, ” Z. Phys. Chem., 147, No. 1–2, 829–847 (1986).

    Google Scholar 

  35. K. Sapru, K. Hong, M. Fetchenko, and S. Venkatesan, Hydrogen Storage Materials, Pat. 451400 USA, Publ. May 11 (1985).

  36. K. Sapru, A. Hong, S. Venkatesan, and M. Fetchenko, Wasserstoffspeichmaterial and Vertahren zum kallbrieren und zum Herstellen der selben fur electrochemische Anwendungen, Pat. 0161075 EP, Publ. November 13 (1985).

  37. H. Miyamura, Hydrogen Absorbing Electrode, Pat. 1–173573 JP, Publ. July 10 (1989).

  38. T. Gamo, Y. Moriwaki, and T. Iwaki, Hydrogen Storage Electrodes and Method of Making the Same, Pat. 0293660 EP, Publ. December 7 (1988).

  39. S. Venkatesan, B. Reichman, and M. Fetchenko, Enhanced Charge Retention Electrochemical Hydrogen Storage Alloys and an Enhanced Charge Retention Electrochemical Cell, Pat. 4728586 USA, Publ. March 1 (1988).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurii M. Solonin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solonin, Y.M., Kolomiets, L.L., Solonin, S.M. et al. Making Calcium Phosphate Biomaterials. Powder Metallurgy and Metal Ceramics 42, 372–378 (2003). https://doi.org/10.1023/B:PMMC.0000004156.63214.28

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PMMC.0000004156.63214.28

Navigation