Skip to main content
Log in

Changes in diversity and storage function of ectomycorrhiza and soil organoprofile dynamics after introduction of beech into Scots pine forests

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Diversity and storage function of mycorrhiza as well as soil organoprofile formation were investigated in a chronosequence of a pure Scots pine (Pinus sylvestris L.) stand, of Scots pine stands that were underplanted with beech (Fagus sylvatica L.) and in three pure beech stands of different age. Mycorrhiza diversity was higher in the pure beech stands compared to the pure pine stand. Beech and pine trees in the mixed stands had similar dominant mycorrhiza morphotypes. However, trees in two of the three pure beech stands were mycorrhized with other types. Mycorrhizal abundance and nutrient amounts of mycorrhizae associated with beech trees were higher in the mixed and in the pure beech stands compared to pine mycorrhizae indicating that nutrient uptake was higher in older beech than in older pine trees. Humus quality varied from pine to beech stands. Plant litter storage in the humus layer was highest in the youngest mixed stand and lowest in the oldest beech stand. Humus forms changed from moder grass-type in the pure Scots pine stand to mor-like moder and moder rich in fine humus with increasing age of beeches in the mixed stands. The older beech stands were characterised by oligomull and mull-like moder as the dominating humus forms. The ecologically favourable humus forms, i.e., nutrient rich humus forms in the older beech stands correlate well with the higher mycorrhizal diversity and abundance as well as the higher nutrient storage of their mycorrhizae in these stands. The results are also discussed with regard to the 'base-pump effect' of beech trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agerer R 1987-2002 Colour Atlas of Ectomycorrhizae. Eichhorn-Verlag, Schwäbisch-Gmünd, Germany.

    Google Scholar 

  • Alexander I J and Fairley R J 1983 Effects of N fertilization on populations of fine roots and mycorrhizas in spruce humus. Plant Soil 71, 49–54.

    Article  CAS  Google Scholar 

  • Baar J, Ozinga W A, Sweers I L and Kuyper T W 1994 Stimulatory and inhibitory effects of needle and grass extracts on the growth of some ectomycorrhizal fungi. Soil Biol. Biochem. 26, 1073–1079.

    Article  Google Scholar 

  • Bednorz F, Reichstein M, Broll G, Holtmeier F-K and Urfer W2000 Humus forms in the forest-alpine tundra ecotone at Stillberg (Dischmatal/Switzerland): Spatial heterogeneity and classification. Arct. Antarct. Alp. Res. 32, 21–29.

    Google Scholar 

  • Bending G D and Read D J 1995 The structure and function of the vegetative mycelium of ectomycorrhizal plants. New Phytol. 130, 401–409.

    CAS  Google Scholar 

  • Berg B and McClaugherty C 2003 Plant litter: Decomposition, humus formation, carbon sequestration. Springer, Berlin, New York.

    Google Scholar 

  • Binkley D 1995 The influence of tree species on forest soils: processes and patterns. In Proceedings of the trees and soil workshop. Eds. D J Mead and Cornforth IS Agronomy Society of New Zealand Special Publication, No. 10, Lincoln University Press.

  • Bocock K L, Gilbert, O, Capstick C K, Twinn D C, Waid J S and Woodmann M J 1960 Changes in leaf litter when placed on the surface of soils with contrasting humus types. I. Losses in dry weight of oak and ash leaf litter. J. Soil Sci. 11, 1–9.

    CAS  Google Scholar 

  • Bonanomi A, Oetiker J H, Guggenheim R, Boller T, Wiemken A and Vögeli-Lange R 2001 Arbuscular mycorrhiza in mini-mycorrhizotrons: first contact of Medicago truncatula roots with Glomus intraradices induces chalcone synthase. New Phytol. 150, 573–582.

    Article  CAS  Google Scholar 

  • Böttcher J, Lauer S, Strebel O and Puhlmann M 1997 Spatial variability of canopy throughfall and groundwater sulfate concentrations under a pine stand. J. Environ. Qual. 26, 503–510.

    Google Scholar 

  • Boufalis A, Pellissier F and Trosset L 1994 Responses of mycorrhizal fungi to allelopathy: Cenococcum geophilum and Laccaria laccata growth with phenolic acids. Acta Bot. Gallica 141, 547–550.

    CAS  Google Scholar 

  • Bücking H and Heyser W 2000a Subcellular compartmentation of elements in non-mycorrhizal and mycorrhizal roots of Pinus sylvestris: an X-ray microanalytical study. I. The distribution of phosphate. New Phytol. 145, 311–320.

    Google Scholar 

  • Bücking H and Heyser W 2000b Subcellular compartmentation of elements in non-mycorrhizal and mycorrhizal roots of Pinus sylvestris: an X-ray microanalytical study. II. The distribution of calcium, potassium and sodium. New Phytol. 145, 321–331.

    Google Scholar 

  • Bücking H and Heyser W 2003 Uptake and transfer of nutrients in ectomycorrhizal associations: Interactions between photosynthesis and phosphate nutrition. Mycorrhiza 13, 59–68.

    PubMed  Google Scholar 

  • Bücking H, Beckmann S, Heyser W and Kottke I 1998 Elemental contents in vacuolar granules of ectomycorrhizal fungi measured by EELS and EDXS. A comparison of different methods and preparation techniques. Micron 29, 53–61.

    Google Scholar 

  • Conn C and Dighton J 2000 Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biol. Biochem. 32, 489–496.

    Article  CAS  Google Scholar 

  • Dahlberg A, Jonsson L and Nylund J-L 1997 Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Can. J. Bot. 75, 1323–1335.

    Google Scholar 

  • Danilatos G D 1988 Foundations of environmental scanning electron microscopy. Adv. Electron. El. Phys. 71, 109–250.

    CAS  Google Scholar 

  • Ellenberg H 1971 Nitrogen content, mineralization and cycling. Productivity of forest ecosystems. Ecol. Conserv. 4, 509–514.

    Google Scholar 

  • Ferris R, Peace A J and Newton A C 2000 Macrofungal communities of lowland Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) plantations in England: Relationships with site factors and stand structure. For. Ecol. Manag. 131, 255–267.

    Google Scholar 

  • Fischer H, Bens O and Hüttl R F 2002 Changes in humus form, humus stock and soil organic matter distribution caused by forest transformation in the northeastern lowlands of Germany. Forstw. Cbl. 121, 322–334.

    Article  CAS  Google Scholar 

  • Frouz J, Keplin B, Pizl V, Tajovský K, Starý J, Lukešová A, Nováková A, Balík V, Hánel L, Materna J, Düker C, Chalupský J, Rusek J and Heinkele T 2001 Soil biota and upper soil layers development in two contrasting post mining chronosequences. Ecol. Eng. 17, 275–284.

    Article  Google Scholar 

  • Harvey A E, Jurgensen M F and Larsen M J 1980 Clearcut harvesting and ectomycorrhizae: Survival of activity on residual roots and influence on a bordering forest stand in western Montana. Can. J. For. Res. 10, 300–303.

    Google Scholar 

  • Haug I, Pritsch K and Oberwinkler F 1992 Der Einfluss von Düngung auf Feinwurzeln und Mykorrhizen im Kulturversuch im Freiland. Forschungsbericht KfK-PEF 97, Kernforschungszentrum, Karlsruhe, Germany. 158 p.

    Google Scholar 

  • Horton T R and Bruns T D 1998 Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytol. 139, 331–339.

    Article  Google Scholar 

  • Howard D M and Howard P J A 1980 Effects of species, source of litter, type of soil, and climate on litter decomposition. Microbial decomposition of tree and shrub leaf litter. Oikos 34, 115–124.

    CAS  Google Scholar 

  • Ilvesniemi H 1991 Spatial and temporal variation of soil chemical characteristics in pine sites in southern Finland. Silva Fennica 25, 99–108.

    Google Scholar 

  • Johansson M B 1986 Chemical composition and decomposition pattern of leaf litters from forest trees in Sweden with special reference to methodological aspects and site properties. PhD thesis, Swedish University of Agricultural Science, Uppsala.

    Google Scholar 

  • Katzensteiner K, Englisch M and Hager H 1999 Taxonomy of forest humus forms – A proposal for an European classification. Institute of Forest Ecology, BOKU-University Vienna, unpublished.

    Google Scholar 

  • Kennedy P G, Izzo A D and Bruns T D 2003 There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J. Ecol. 91, 1071–1080.

    Article  Google Scholar 

  • Koide R T, Suomi L, Stevens C M and McCormick L 1998 Interactions between needles of Pinus resinosa and ectomycorrhizal fungi. New Phytol. 140, 539–547.

    Article  Google Scholar 

  • Kottke I 2002 Mycorrhizae-rhizosphere determinants of plant communities. In Plant Roots the Hidden Half. Eds. Y Waisel, A Eshel and U Kafkafi. pp. 919–932. 3rd edition. Marcel Dekker, Inc., New York, Basel.

    Google Scholar 

  • Kottke I, Qian X M, Pritsch K, Haug I and Oberwinkler F 1998 Xerocomus badius – Picea abies, an ectomycorrhiza of high activity and element storage capacity in acidic soil. Mycorrhiza 7, 267–275.

    Article  Google Scholar 

  • Kranabetter J M 1999 The effect of refuge trees on a paper birch ectomycorrhiza community. Can. J. Bot. 77, 1523–1528.

    Google Scholar 

  • Kranabetter J M and Wylie T 1998 Ectomycorrhizal community structure across forest openings on naturally regenerated western hemlock seedlings. Can. J. Bot. 76, 189–196.

    Article  Google Scholar 

  • Kranabetter J M, Hayden S and Wright E F 1999 A comparison of ectomycorrhiza communities from three conifer species planted on forest gap edges. Can. J. Bot. 77, 1193–1198.

    Google Scholar 

  • Liski J 1995 Variation in soil organic carbon and thickness of soil horizons within a boreal forest stand – Effect of trees and implication for sampling. Silva Fennica 29, 255–266.

    Google Scholar 

  • Lux A, Luxova M, Hattori T, Inanaga S and Sugimoto Y 2002 Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol. Plant. 115, 87–92.

    Article  CAS  PubMed  Google Scholar 

  • Molina R, Massicotte H and Trappe J M 1992 Specificity phenomena in mycorrhizal symbiosis: community-ecological consequences and practical implications. In Mycorrhizal Functioning: An Integrated Plant-Fungal Process. Ed. M F Allen. pp. 357–423. Chapman and Hall, London.

    Google Scholar 

  • Müller J, Beck W, Hornschuch F and Steiner A 2002 Quantifizierung der ökologischen Wirkungen aufwachsender Kiefern-Buchen-Mischbestände im nordostdeutschen Tiefland. Beitr. Forstwirtsch. u. Landscha. Ökol. 36, 125–131.

    Google Scholar 

  • Müller M 2000 Waldbaurahmenrichtlinie der Landesforstverwaltung Brandenburg. AFZ/Der Wald 5, 239–243.

    Google Scholar 

  • Nantel P and Neumann P 1992 Ecology of ectomycorrhizal-basidiomycete communities on a local vegetation gradient. Ecology 73, 99–117.

    Google Scholar 

  • Newton A C and Haigh J M1998 Diversity of ectomycorrhizal fungi in Britain: a test of the species–area relationship, and the role of host specificity. New Phytol. 138, 619–627.

    Article  Google Scholar 

  • Olsson P A, Jakobsen I and Wallander H 2002 Foraging and resource allocation strategies of mycorrhizal fungi in a patchy environment. In Mycorrhizal Ecology, Ecological Studies Vol. 157. Eds. M A G van der Heijden and I Sanders. pp. 93–115. Springer, Berlin Heidelberg.

    Google Scholar 

  • Pellessier F 1993 Allelopathic effect of phenolic acids from humic solutions on two spruce mycorrhizal fungi: Cenococcum graniforme and Laccaria laccata. J. Chem. Ecol. 19, 2105–2114.

    Google Scholar 

  • Perez-Moreno J and Read D J 2000 Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytol. 145, 301–309.

    Article  CAS  Google Scholar 

  • Peter M, Ayer F, Egli S and Honegger R 2001 Above-and below-ground community structure of ectomycorrhizal fungi in three Norway spruce (Picea abies) stands in Switzerland. Can. J. Bot. 79, 1134–1151.

    Article  Google Scholar 

  • Pöhhacker R 1995 Steuerungsfaktoren des Streuabbaus. Bayreuther Bodenkundliche Berichte, Vol. 39. 132 pp.

  • Qian X M, Kottke I and Oberwinkler F 1998 Influence of liming and acidification on the activity of the mycorrhizal communities in a Picea abies (L.) Karst. stand. Plant Soil 199, 99–109.

    CAS  Google Scholar 

  • Rapp C 1991 Untersuchungen zum Einfluß von Kalkung und Ammoniumsulfat-Düngung auf Feinwurzeln und Ektomykorrhizen eines Buchenaltbestandes im Solling. Berichte des Forschungszentrums Waldökosysteme, Vol. A 72, Universität Göttingen, Germany. 293 pp.

    Google Scholar 

  • Rastin N 1994 Biochemischer und mikrobiologischer Zustand verschiedener Waldböden. Universität Göttingen, Vol. 115. 148 pp.

  • Rehfuess K E 1990 Waldböden – Entwicklung, Eigenschaften und Nutzung. 2nd ed., Parey, Hamburg and Berlin.

    Google Scholar 

  • Rothe A and Kreutzer K 1998 Wechselwirkungen zwischen Fichte und Buche im Mischbestand. AFZ/Der Wald 15, 784–787.

    Google Scholar 

  • Sachs L 1992 Applied Statistics. 7th ed., Springer, Berlin.

    Google Scholar 

  • Schäfer B, Bens O, Fischer H and Hüttl R F 2002 Effects of tree species variation on water retention capacity of sandy luvisols in north-east Brandenburg. Forst Holz 57, 571–575.

    Google Scholar 

  • Soil Survey Staff 1998 Keys to soil taxonomy. 8th Ed. Natural Resources Conservation Service, USDA, Washington, DC.

    Google Scholar 

  • SRU 2000 Umweltgutachten 2000. Gutachten des Rates von Sachverständigen für Umweltfragen der Bundesregierung. Metzler-Poeschel, Stuttgart, Germany. 685 pp.

    Google Scholar 

  • Stackebrandt W, Ehmke G and Manhenke V 1997 Atlas zur Geologie von Brandenburg. Landesamt für Geowissenschaften und Rohstoffe Brandenburg. Kleinmachnow.

    Google Scholar 

  • Stevenson F J and Cole M A 1999 Cycles of soil. 2nd ed. Wiley and Sons, New York. 427 pp.

    Google Scholar 

  • Taylor A F S, Martin F and Read D J 2000 Fungal diversity in ectomycorrhizal communities of Norway spruce [Picea abies (L.) Karst.] and beech (Fagus sylvatica L.) along north-south transects in Europe. In Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecological Studies, Vol. 142. Ed. E-D Schulze. pp. 343–365. Springer, Berlin, Heidelberg.

    Google Scholar 

  • van der Heijden E W, Vries F W and Kuyper T W 1999 Mycorrhizal associations of Salix repens L. communities in succession of dune ecosystems. I. Above-ground and below-ground views of ectomycorrhizal fungi in relation to soil chemistry. Can. J. Bot. 77, 1821–1832.

    Google Scholar 

  • Vejre H and Hoppe C 1998 Distribution of Ca, K, Mg, and P in acid forest soils in plantations of Picea abies – Evidence of the base-pump effect. Scand. J. For. Res. 13, 265–273.

    Google Scholar 

  • Weber E 1972 Grundriss der Biologischen Statistik. Anwendungen der mathematischen Statistik in Naturwissenschaften und Technik. 7th ed. Fischer, Stuttgart.

    Google Scholar 

  • Williams B L 1992 Nitrogen dynamics in humus and soil beneath Sitka spruce (Picea sitchensis (Bong.) Carr) planted in pure stands and in mixture with Scots pine (Pinus sylvestris L.). Plant Soil 144, 77–84.

    Article  Google Scholar 

  • Williams B L 1996 Total, organic and extractable-P in humus and soil beneath Sitka spruce planted in pure stands and in mixture with Scots pine. Plant Soil 182, 177–183.

    CAS  Google Scholar 

  • Wöllecke J 2001 Charakterisierung der Mykorrhizazönosen zweier Kiefernforste unterschiedlicher Trophie. Cottbuser Schriften zu Bodenschutz und Rekultivierung, Vol. 17. Cottbus, Germany. 185 pp.

    Google Scholar 

  • Wöllecke J, Münzenberger B and Hüttl R F 1998 Pinirhiza rufomaculata +Pinus sylvestris L. Descr. Ectomyc. 3, 79–84.

    Google Scholar 

  • Wolters V 1989 Die Zersetzungsnahrungskette von Buchenwäldern. Untersuchungen zur ökosystemaren Bedeutung der Interaktionen zwischen Bodentieren und Mikroflora. Verh. Ges. Ökologie 17, 213–219.

    Google Scholar 

  • Yang G, Cha J Y, Shibuya M, Yajima T and Takahashi K 1998 The occurrence and diversity of ectomycorrhizas of Larix kaempferi seedlings on a volcanic mountain in Japan. Mycol. Res. 102, 1503–1508.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rumberger, M.D., Münzenberger, B., Bens, O. et al. Changes in diversity and storage function of ectomycorrhiza and soil organoprofile dynamics after introduction of beech into Scots pine forests. Plant Soil 264, 111–126 (2004). https://doi.org/10.1023/B:PLSO.0000047793.14857.4f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLSO.0000047793.14857.4f

Navigation