Skip to main content
Log in

Soil respiration under elevated CO2 and its partitioning into recently assimilated and older carbon sources

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Efflux of soil CO2 (soil respiration) plays a crucial role in the global carbon cycle and may be strongly altered by global change. In this study, we measured soil respiration in situ under elevated CO2 concentration (550 μmol mol−1), and estimated the importance of recent carbon (root/rhizosphere respiration) vs. older carbon to the total soil CO2 efflux. The measurements were carried out during 2001 in a sugar beet field at the Free-Air Carbon-dioxide Enrichment (FACE) facility at the Federal Agricultural Research Centre (Braunschweig, Germany). During a period of high plant activity, soil respiration was considerably higher (34%) in the rings with elevated CO2 concentration than in the control rings (fumigated with ambient air). During a day with low plant activity, however, no differences in soil CO2 effluxes were detected. Different levels of N fertilisation generally had no effect on soil respiration in ambient and elevated rings, and soil microbial biomass generally did not change in response to the CO2 enrichment. To determine the contribution of recently assimilated C to total soil respiration, we used the stable C isotope tracer provided by the CO2 used to increase the atmospheric CO2 concentration, which was depleted in 13C. Roots and rhizosphere contributed 70±4% to total soil respiration, independent of overall soil CO2 fluxes. The observed dominance of carbon losses from recently assimilated carbon and a minute depletion in the carbon isotope ratio of the top soil of 0.4‰ under elevated CO2 adds major uncertainties to the anticipated increase of soil carbon storage in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen A S, Andrews J A, Finzi A C, Matamala R, Richter D D, Schlesinger W H 2000 Effects of free-air CO2 enrichment (FACE) on below-ground processes in a Pinus taedaforest. Ecol. Applic. 10, 437-448.

    Google Scholar 

  • Amthor J S 2001 Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. Field Crop Res. 73, 1-34.

    Article  Google Scholar 

  • Anderson J P E, Domsch K H 1978 A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biogeochem. 10, 215-221.

    Article  Google Scholar 

  • Andrews J A, Harrison K G, Matamala R, Schlesinger W H 1999 Separation of root respiration from total soil respiration using carbon-13 labeling during Free-Air Carbon Dioxide Enrichment (FACE). Soil Sci. Soc. Am. J. 63, 1429-1435.

    Google Scholar 

  • Boone R D, Nadelhoffer K J, Canary J D, Kaye J P 1998 Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396, 570-572.

    Article  Google Scholar 

  • Brooks T J, Wall G W, Pinter P J, Kimball B A, LaMorte R L, Leavitt S W, Matthias A D, Adamsen F J, Hunsaker D J, Webber A N 2000 Acclimation response of spring wheat in a free-air CO2 enrichment (FACE) atmosphere with variable soil nitrogen regimes. 3. Canopy architecture and gas exchange. Photosynth. Res. 66, 97-108.

    Article  Google Scholar 

  • Cheng W X and Johnson D W 1998 Elevated CO2, rhizosphere processes, and soil organic matter decomposition. Plant Soil 202, 167-174.

    Article  Google Scholar 

  • Couteaux M M, Kurz C, Bottner P and Raschi A 1999 Influence of increased atmospheric CO2 concentration on quality of plant material and litter decomposition. Tree Physiol. 19, 301-311.

    PubMed  Google Scholar 

  • Craig H 1957 Isotopic standards for carbon and oxygen and correlation factors for mass spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 12, 133-149.

    Article  Google Scholar 

  • Craine J M, Wedin D A and Reich P B 2001 The response of soil CO2 flux to changes in atmospheric CO2, nitrogen supply and plant diversity. Global Change Biol. 7, 947-053.

    Article  Google Scholar 

  • Daepp M, Nosberger J and Luscher A 2001 Nitrogen fertilization and developmental stage alter the response of Lolium perenneto elevated CO2. New Phytol. 150, 347-358.

    Article  Google Scholar 

  • Ekblad A and Högberg P 2000 Analysis of delta C-13 of CO2 distinguishes between microbial respiration of added C-4-sucrose and other soil respiration in a C-3-ecosystem. Plant Soil 219, 197-209.

    Article  Google Scholar 

  • Filion M, Dutilleul P and Potvin C 2000 Optimum experimental design for Free-Air Carbon dioxide Enrichment (FACE) studies. Glob. Change Biol. 6(7), 843-854.

    Article  Google Scholar 

  • Gill R A, Polley H W, Johnson H B, Anderson L J, Maherali H and Jackson R B 2002 Nonlinear grassland responses to past and future atmospheric CO2. Nature 417, 279-282.

    PubMed  Google Scholar 

  • Hanson P J, Edwads N, Garten C T and Andrews J A 2000 Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48, 115-146.

    Article  Google Scholar 

  • Heinemeyer O, Insam H, Kaiser E A and Walenzik G 1989 Soil microbial biomass and respiration measurements-An automated technique based on infrared gas-analysis. Plant Soil 116, 191-195.

    Google Scholar 

  • Hendrey G H, Lewin K F and Nagy, J 1993 Control of carbon dioxide in unconfined field plots. InDesign and execution of experiments on CO2 enrichments. Eds. Schulze E D, Mooney H A. pp. 309-328. Commission of the European Communities, Dissemination of Scientific and Technical Knowledge Unit, Brussels.

    Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor A F S, Ekblad A, Högberg M N, Nyberg G and Ottosson-Lofvenius M 2001 Largescale forest girdling shows that current photosynthesis drives soil respiration. Nature 411, 789-792.

    PubMed  Google Scholar 

  • Hungate B A, Holland E, Jackson R B, Chapin F S, Mooney H A and Field C B 1997 The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388, 576-579.

    Article  Google Scholar 

  • Hurlbert S T 1984 Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54(2), 187-211.

    Google Scholar 

  • IPCC 2001 Climate Change 2001, The Scientific Basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  • Kartschall T, Grossman S, Pinter P J, Garcia R L, Kimball B A, Wall G W, Hunsaker D J and LaMorte R L 1995 A simulation of phenology, growth, carbon dioxide exchange and yields under ambient atmosphere and free-air carbon dioxide enrichment (FACE) Maricopa, Arizona, for wheat. J. Biogeogr. 22, 611-622.

    Google Scholar 

  • Keeling C 1958 The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim. Cosmochim. Acta, 322-334.

  • Keeling C D 1961 The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochim. Cosmochim. Acta 24, 277-298.

    Article  Google Scholar 

  • Keeling C D, Bacastow R B, Bainbridge A E, Ekdahl C A, Guenther P R and Waterman L S 1976 Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus 18, 538-551.

    Google Scholar 

  • King J S, Pregitzer K S, Zak D R, Sober J, Isebrands J G, Dickson R E, Hendrey G R and Karnosky D F 2001 Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia 128, 237-250.

    Article  Google Scholar 

  • Kleikamp B, Helal M, Manderscheid R and Weigel H J 2002 DeEinfluss von CO2 Freilandbegasung (FACE) bei variierter N-Düngung auf die Wurzelentwicklung von Wintergetreide und Zuckerrübe. Verhandlungen der Gesellschaft für Ökologie Vol. 32, 249.

    Google Scholar 

  • Kuzyakov Y 2002 Review: Factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 165, 382-396.

    Google Scholar 

  • Lin G and Ehleringer J R 1997 Carbon isotopic fractionation does not occur during dark respiration in C3 and C4 plants. Plant Physiol. 114, 391-394.

    PubMed  Google Scholar 

  • Manderscheid R, Frühauf C and Weigel H J 2002 DeInteraktion von Freiland-CO2-Anreicherung (FACE) und Stickstoffdüngung auf die Entwicklung des Blattapparates der Zuckerrüben. Verhandlungen der Gesellschaft für Ökologie Vol. 32, 251.

    Google Scholar 

  • Nitschelm J J, Luscher A, Hartwig U A and van Kessel C 1997 Using stable isotopes to determine soil carbon input differences under ambient and elevated atmospheric CO2 conditions. Glob. Change Biol. 3, 411-416.

    Article  Google Scholar 

  • Pendall E 2002 Where does all the carbon go? The missing sink. New Phytol. 153, 199-211.

    Article  Google Scholar 

  • Pendall E, Leavitt S W, Brooks T, Kimball B A, Pinter P J, Wall G W, LaMorte R L, Wechsung G, Wechsung F, Adamsen F, Matthias A D and Thompson T L 2001 Elevated CO2 stimulates soil respiration in a FACE wheat field. Basic Appl. Ecol. 2, 193-201.

    Google Scholar 

  • Prior S A, Rogers H H, Runion G B and Hendrey G R 1994 Freeair enrichment of cotton: vertical and lateral root distribution patterns. Plant Soil 165, 33-44.

    Google Scholar 

  • Rochette P and Flanagan L B 1997 Quantifying rhizosphere respiration in a corn crop under field conditions. Soil Sci. Soc. Am. J. 61, 466-474.

    Google Scholar 

  • Rogers H H, Prior S A, Runion G B and Mitchell R J 1996 Root to shoot ratio of crops as influenced by CO2. Plant Soil 187, 229-248.

    Google Scholar 

  • Schortemeyer M, Hartwig U A, Hendrey G R and Sadowsky M J 1996 Microbial community changes in the rhizospheres of white clover and perennial ryegrass exposed to free air carbon dioxide enrichment (FACE). Soil Biol. Biochem. 28, 1717-1724.

    Article  Google Scholar 

  • Sokal R and Rohlf F 1997 Biometry-The Principles and Practice of Statistics in Biological Research. W. H. Freeman and Company, New York, pp. 1-887.

    Google Scholar 

  • Tans P P, Fung I Y and Takahashi T 1990 Observational constrains on the global atmospheric CO2 budget. Science 247, 1431-1438.

    Google Scholar 

  • Torbert H A, Rogers H H, Prior S A, Schlesinger W H and Runion G B 1997 Effects of elevated atmospheric CO2 in agro-ecosystems on soil carbon storage. Glob. Change Biol. 3, 513-521.

    Article  Google Scholar 

  • Wechsung G, Wechsung F, Wall G W, Adamsen F J, Kimball B A, Pinter P J, Lamorte R L, Garcia R L and Kartschall T 1999 The effects of free-air CO2 enrichment and soil water availability on spatial and seasonal patterns of wheat root growth. Glob. Change Biol. 5, 519-529.

    Article  Google Scholar 

  • Weigel H J and Dämmgen U 2000 The Braunschweig Carbon Project: Atmospheric flux monitoring and free air carbon dioxide enrichment (FACE). J. Appl. Botany (Angewandte Botanik) 74, 55-60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Søe, A.R., Giesemann, A., Anderson, TH. et al. Soil respiration under elevated CO2 and its partitioning into recently assimilated and older carbon sources. Plant and Soil 262, 85–94 (2004). https://doi.org/10.1023/B:PLSO.0000037025.78016.9b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLSO.0000037025.78016.9b

Navigation