Skip to main content
Log in

Root Typ: a generic model to depict and analyse the root system architecture

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Dynamic models of root system development and architecture integrate various developmental processes and let simulate multiple dynamic interactions. They are recognised as valuable tools to study the soil–plant–atmosphere continuum. In the recent years, some models have emerged from fractal descriptions. Others arose from developmental approaches but most efforts met little success for genericity. Among the difficulties with models are their growing complexity and they inability to detail evenly all important mechanisms often due to a deficit of independent and suitable data for model testing. We propose here a generic model called `Root Typ' dedicated to quantitative and global analyses of root system architectures and simplified representation of architectural diversity. It aims at (i) detailing evenly a large range of developmental processes, (ii) generalising the concept of root type and (iii) representing in a very simplified way soil effects on developmental processes. The model implements several developmental processes including: root emission, axial and radial growth, sequential branching, reiteration, transition, decay and abscission, which are all discussed in details. Finally, it's ability to mimic a diversity of root architectures is tested against representative root systems depicted in the book of Kutschera (1960) which represents an independent database collected on a large number of plant species and soil conditions, and gives an overall synthetic view upon root systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atger C and Edelin C 1992 Premières données sur l'architecture comparée des systèmes racinaires et caulinaires des arbres. Can. J. Bot. 72, 963–975.

    Google Scholar 

  • Cannon W A 1949 A tentative classification of root systems. Ecology 30, 452–458.

    Google Scholar 

  • Charlton W A 1967 The root system of Linaria vulgaris mill. II. Differentiation of root types. Can. J. Bot. 45, 81–91.

    Google Scholar 

  • Clausnitzer V and Hopmans J W 1994 Simultaneous modeling of transient three-dimensional root growth and soil water flow. Plant Soil 164, 299–314.

    Google Scholar 

  • Collet C, Pagès L and Löf M 2002 Root system architecture of oak seedlings in competition with grass. In Popular summaries of the international conference on forest vegetation management. Eds. H. Frochot, C Collet and P Balandier, pp. 223–225, Nancy, France.

  • Coutts M P 1983 Root architecture and tree stability. Plant Soil 71, 171–188.

    Google Scholar 

  • Coutts M P 1987 Developmental processes in tree root systems. Can. J. For. Res. 17, 761–767.

    Google Scholar 

  • Coutts M P 1989 Factors affecting growth direction of tree roots. Ann. Sci. For. 46, 277–287.

    Google Scholar 

  • Coutts M P and Nichol B C 1993 Orientation of the lateral roots of trees. II. Hydrotropic and gravitropic responses of lateral roots of Sitka spruce grown in air at different humidities. New Phytol. 124, 277–281.

    Google Scholar 

  • Deacon J W and Mitchell R T 1985 Comparison of rates of natural senescence of the root of wheat, barley, oats, and rye. Plant Soil 85, 129–131.

    Google Scholar 

  • Diggle A J 1988 ROOTMAP — a model in three-dimensional coordinates of the growth and structure of fibrous root systems. Plant Soil 105, 169–178.

    Google Scholar 

  • Doussan C, Pagès L and Vercambre G 1998 Modelling the hydraulic architecture of root systems: An integrated approach of water absorption. I. Model description. Ann. Bot. 81, 213–223.

    Google Scholar 

  • Dyanat-Nejad H and Neville P 1973 Variation du nombre de faisceaux dans la racine principale du Cacaoyer (Theobroma cacao L.). Rev. Gén. Bot. 80, 41–74.

    Google Scholar 

  • Ennos A R, Crook M J and Grimshaw C 1993 A comparative study of the anchorage systems of Himalayan balsam Impatiens glandulifera and mature sunflower Helianthus annuus. J. Exp. Bot. 44, 133–146.

    Google Scholar 

  • Fayle D C F 1975 Archy and diameter of primary xylem in horizontal and vertical roots of red pine. Can. J. For. Res. 5, 122–129.

    Google Scholar 

  • Fitter A H 1987 An architectural approach to the comparative ecology of plant root systems. New Phytol. 106(Suppl.), 61–77.

    Google Scholar 

  • Fitter A H 2002 Characteristics and functions of root systems. In Plant Roots, the Hidden Half. Eds. Y Waisel, A Eshel and U Kafkafi. pp. 15–32. Marcel Dekker Inc., New York.

    Google Scholar 

  • Fitter A H and Stickland T R 1992 Fractal characterization of root system architecture. Funct. Ecol. 6, 632–635.

    Google Scholar 

  • Fitter A H, Stickland T R, Harvey ML and Wilson GW 1991 Architectural analysis of plant root systems. 1. Architectural correlates of exploitation efficiency. New Phytol. 118, 375–382.

    Google Scholar 

  • Fortin M C and Poff K L 1991 Characterization of thermotropism in primary roots of maize: dependence on temperature and temperature gradient, and interaction with gravitropism. Plant 184, 410–414.

    Google Scholar 

  • Fusseder A 1987 The longevity and activity of the primary root of maize. Plant Soil 101, 257–265.

    Google Scholar 

  • Grabarnik P, Pagès L and Bengough A G 1998 Geometrical properties of simulated maize root systems: consequences for length density and intersection density. Plant Soil 200, 157–167.

    Google Scholar 

  • Hallé F, Oldeman R A A and Tomlinson P B 1978 Tropical Trees and Forests. Springer, Berlin.

    Google Scholar 

  • Jourdan C and Rey H 1997 Modelling and simulation of the architecture and development of the oil-palm (Elaeis guinensis Jacq.) root system. I. The model. Plant Soil 190, 217–233.

    Google Scholar 

  • Jourdan C, Rey H and Guédon Y 1995 Architectural analysis and modeling of the branching process of the young oil-palm root system. Plant Soil 177, 63–72.

    Google Scholar 

  • Kahn F 1978 Analyse structurale des systèmes racinaires des plantes ligneuses de la forêt tropicale dense humide. Candollea 32, 321–358.

    Google Scholar 

  • Klepper B, Belford R K and Rickman R W 1984 Root and shoot development in winter wheat. Agron. J. 76, 117–122.

    Google Scholar 

  • Kutschera L 1960 Wurzelatlas mitteleuropäischer Ackerunkräuter und Kulturpflanzen. DLG Verlag, Frankfurt am main, Germany.

    Google Scholar 

  • Le Roux Y and Pagès L 1994 Développement et polymorphisme racinaire chez de jeunes semis d'hévéa (Hevea brasiliensis). Can. J. Bot. 72, 924–932.

    Google Scholar 

  • Le Roux Y and Pagés L 1996 Réaction géotropique des différents types de racines chez l'hévéa (Hevea brasiliensis). Can. J. Bot. 74, 1910–1918.

    Google Scholar 

  • Liang J, Zhang J and Wong M H 1996 Effects of air-filled porosity and aeration on the initiation and growth of secondary roots of maize (Zea mays). Plant Soil 186, 245–254.

    Google Scholar 

  • Logsdon S D and Linden D R 1992 Interactions of earthworm with soil physical conditions influencing plant growth. Soil Sci. 154, 330–337.

    Google Scholar 

  • Lyford W H 1980 Development of the root system of northern red oak (Quercus rubra L). USDA Forest Service, Harvard Forest Paper 21, 31 pp.

  • Lyford W H and Wilson B F 1964 Development of the root system of Acer rubrum L. USDA Forest Service, Harvard Forest Paper 10, 1–17.

  • Lynch J P, Nielsen K L, Davis R D and Jablokow A G 1997 Simroot: modelling and visualisation of root systems. Plant Soil 188, 139–151.

    Google Scholar 

  • Muller P A 1997 Modélisation objet avec UML. Eyrolles, Paris, France.

    Google Scholar 

  • Nemoto K and Yamazaki K 1986 The successive stem growth and its relations to the diameters and the numbers of primary roots on main axes of rice plants. Jpn. J. Crop Sci. 55, 352–359.

    Google Scholar 

  • Oldeman R A A 1974 L'architecture de la forêt guyanaise. Orstom, Paris, France.

    Google Scholar 

  • Ozier-Lafontaine H, Lecompte F and Sillon J F 1999 Fractal analysis of the root architecture of Gliricidia sepium for the spatial prediction of root branching, size, and mass. Model development and evaluation in agroforestry. Plant Soil 209, 167–180.

    Google Scholar 

  • Pagès L and Aries F 1988 SARAH: modèle de simulation de la croissance, du développement, et de l'architecture des systèmes racinaires. Agronomie 8, 889–896.

    Google Scholar 

  • Pagès L and Bengough A G 1997 Modelling minirhizotron observations to test experimental procedures. Plant Soil 189, 81–89.

    Google Scholar 

  • Pagès L and Pellerin S 1994 Evaluation of parameters describing the root system architecture of filed grown maize plants (Zea mays L.). II. Density, length, and branching of first-order lateral roots. Plant Soil 164, 169–176.

    Google Scholar 

  • Pagès L and Pellerin S 1996 Study of differences between vertical root maps observed in a maize crop and simulated maps obtained using a three-dimensional model of the root system architecture. Plant Soil 182, 329–337.

    Google Scholar 

  • Pagès L, Jordan M O and Picard D 1989 A simulation model of the three-dimensional architecture of the maize root system. Plant Soil 119, 147–154.

    Google Scholar 

  • Pagés L, Chadoeuf J and Kervella J 1992 Modélisation stochastique de la croissance et du développement du système racinaire de jeunes pêchers. I. Estimation et validation du modèle. Agronomie 12, 447–458.

    Google Scholar 

  • Pagès L, Le Roux Y and Thaler P 1995 Modélisation de l'architecture racinaire de l'hévéa. Plantations Recherche et Dév. 2, 19–34.

    Google Scholar 

  • Picard D, Jordan M O and Trendel R 1985 Rythme d'apparition des racines primaires du maïs (Zea mays L.). I. Etude détaillée pour une variété en un lieu donné. Agronomie 5, 667–676.

    Google Scholar 

  • Riedacker A, Dexheimer J, Takavol R and Alaoui H 1982 Modifications expérimentales de la morphogenèse et des tropismes dans le système racinaire de jeunes chênes. Can. J. Bot. 60, 765–778.

    Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K and Kira T 1964 A quantitative analysis of plant form — the pipe model theory. I. Basic analyses. Jpn. J. Ecol. 14, 97–105.

    Google Scholar 

  • Somma F, Hopmans J W and Clausnitzer V 1998 Transient three-dimensional modeling of soil water and solute transport with simultaneous root growth, root water and nutrient uptake. Plant Soil 202, 281–293.

    Google Scholar 

  • Spek L Y and Van Noordwijk M 1994 Proximal root diameters as predictors of total root system size for fractal branching models. II. Numerical model. Plant Soil 164, 119–128.

    Google Scholar 

  • Sutton R F and Tinus R W 1983 Root and root system terminology. Forest Science Monograph 24.

  • Takano M, Takahashi H, Hirasawa T and Suge H 1995 Hydrotropism in roots: sensing of a gradient in water potential by the root cap. Planta 197, 410–413.

    Google Scholar 

  • Tardieu F 1988 Analysis of the spatial variability of maize root density. II. Distances between roots. Plant Soil 107, 267–272.

    Google Scholar 

  • Tardieu F and Pellerin S 1990 Trajectory of the nodal roots of maize in fields with low mechanical constraints. Plant Soil 124, 39–45.

    Google Scholar 

  • Thaler P and Pagès L 1996 Periodicity in the development of the root system of young rubber trees. Relationship with shoot development. Plant Cell Environ. 19, 56–64.

    Google Scholar 

  • Thaler P and Pagès L 1998 Modelling the influence of assimilate availability on root growth and architecture. Plant Soil 201, 307–320.

    Google Scholar 

  • Tsegaye T, Mullins C E and Diggle A J 1995a An experimental procedure for obtaining input parameters for the ‘ROOTMAP’ root simulation program for peas (Pisum sativum L.). Plant Soil 172, 1–16.

    Google Scholar 

  • Tsegaye T, Mullins C E and Diggle A J 1995b Modelling pea (Pisum sativum) root growth in drying soil. A comparison between observations and model predictions. New Phytol. 131, 179–189.

    Google Scholar 

  • Van Noordwijk M, Spek L Y and De Willigen P 1994 Proximal root diameters as predictors of total root system size for fractal branching models. I. Theory. Plant Soil 164, 107–118.

    Google Scholar 

  • Varney G T and McCully M E 1991 The branch roots of Zea. II. Developmental loss of the apical meristem in field-grown roots. New Phytol. 118, 535–546.

    Google Scholar 

  • Vercambre G, Pagès L, Doussan C and Habib R 2003 Architectural analysis and synthesis of the plum tree root system in an orchard using a quantitative modelling approach. Plant Soil 251, 1–11.

    Google Scholar 

  • Waisel Y and Eshel A 2002 Functional diversity of various constituents of a single root system. In Plant Roots, the Hidden Half. Eds. Y Waisel, A Eshel and U Kafkafi. pp. 157–174. Marcel Dekker Inc., New York.

    Google Scholar 

  • Wang J, Hesketh J D and Wooley J T 1986 Preexisting channels and soybean rooting patterns. Soil Sci. 141, 432–437.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagès, L., Vercambre, G., Drouet, JL. et al. Root Typ: a generic model to depict and analyse the root system architecture. Plant and Soil 258, 103–119 (2004). https://doi.org/10.1023/B:PLSO.0000016540.47134.03

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLSO.0000016540.47134.03

Navigation