Skip to main content
Log in

A Novel Family of Ca2+/Calmodulin-Binding Proteins Involved in Transcriptional Regulation: Interaction with fsh/Ring3 Class Transcription Activators

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A novel CaM-binding protein was isolated through protein–protein interaction based screening of an Arabidopsis cDNA expression library using a 35S calmodulin (CaM) probe. There are four additional homologs in the Arabidopsis genome with similar structures: a BTB domain in the N-terminus and a Zf-TAZ domain in the C-terminus. Hence, they were designated as AtBT1-5 (A rabidopsis t haliana BTB and TAZ domain protein). CaM-binding experiments revealed that all five AtBTs are CaM-binding proteins, and their CaM-binding domains were mapped to the C-terminus. AtBT homologs are also present in rice, but are not present in human, animal, yeast or other organisms, suggesting that the BTB and TAZ domain proteins are plant-specific. The AtBT1-smGFP fusion protein expressed in tobacco BY-2 cells showed that AtBT1 targets the nucleus. Yeast two-hybrid screening using an AtBT1 fragment as bait identified two interacting proteins (AtBET10 and AtBET9) belonging to the family of fsh/Ring3 class transcription regulators. The BTB domain of the AtBTs is required for the interaction, and this protein–protein interaction was confirmed by GST pull-down. AtBET10 also interacts with AtBT2 and AtBT4, and exhibited a transcriptional activation function in yeast cells. AtBTs exhibit varying responses to different stress stimuli, but all five genes responded rapidly to H2O2 and salicylic acid (SA) treatments. These results suggest that AtBTs play a role in transcriptional regulation, and signal molecules such as Ca2+, H2O2, and SA affect transcriptional machinery by altering the expression and conformation of AtBTs which interact with transcriptional activators such as AtBET10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albagli, O., Dhordain, P., Deweindt, C., Lecocq, G. and Leprince, D. 1995. The BTB/POZ domain: a new protein-protein interaction motif common to DNA-and actinbinding proteins. Cell Growth Differ. 6: 1193–1198.

    PubMed  Google Scholar 

  • Alvarez, M.E. 2000. Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol. Biol. 44: 429–442.

    Article  PubMed  Google Scholar 

  • Alvarez, M.E., Pennell, R.I., Meijer, P.J., Ishikawa, A., Dixon, R.A. and Lamb, C. 1998. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92: 773–784.

    Article  PubMed  Google Scholar 

  • Borsani, O., Valpuesta, V. and Botella, M.A. 2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol. 126: 1024–1030.

    Article  PubMed  Google Scholar 

  • Bouche, N., Scharlat, A., Snedden, W., Bouchez, D. and Fromm, H. 2002. A novel family of calmodulin-binding transcription activators in multicellular organisms. J. Biol. Chem. 277: 21851–21861.

    Article  PubMed  Google Scholar 

  • Bowler, C. and Fluhr, R. 2000. The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci. 5: 241–246.

    Article  PubMed  Google Scholar 

  • Chan, H.M. and La Thangue, N.B. 2001. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci. 114: 2363–2373.

    PubMed  Google Scholar 

  • Collins, T., Stone, J.R. and Williams, A.J. 2001. All in the family: the BTB/POZ, KRAB, and SCAN domains. Mol. Cell Biol. 21: 3609–3615.

    Article  PubMed  Google Scholar 

  • Corneliussen, B., Holm, M., Waltersson, Y., Onions, J., Hallberg, B., Thornell, A. and Grundstrom, T. 1994. Calcium/calmodulin inhibition of basic-helix-loop-helix transcription factor domains. Nature 368: 760–764.

    Article  PubMed  Google Scholar 

  • Davis, S.J. and Vierstra, R.D. 1998. Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol. Biol. 36: 521–528.

    Article  PubMed  Google Scholar 

  • De Guzman, R.N., Liu, H.Y., Martinez-Yamout, M., Dyson, H.J. and Wright, P.E. 2000. Solution structure of the TAZ2 (CH3) domain of the transcriptional adaptor protein CBP. J. Mol. Biol. 303: 243–253.

    Article  PubMed  Google Scholar 

  • Denis, G.V., Vaziri, C., Guo, N. and Faller, D.V. 2000. RING3 kinase transactivates promoters of cell cycle regulatory genes through E2F. Cell Growth Differ. 11: 417–424.

    PubMed  Google Scholar 

  • Desikan, R., S, A.H.-M., Hancock, J.T. and Neill, S.J. 2001. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 127: 159–172.

    Article  PubMed  Google Scholar 

  • Dey, A., Ellenberg, J., Farina, A., Coleman, A.E., Maruyama, T., Sciortino, S., Lippincott-Schwartz, J. and Ozato, K. 2000.A bromodomain protein, MCAP, associates with mitotic chromosomes and affects G(2)-to-M transition. Mol. Cell Biol. 20: 6537–6549.

    Article  PubMed  Google Scholar 

  • Dhalluin, C., Carlson, J.E., Zeng, L., He, C., Aggarwal, A.K. and Zhou, M.M. 1999. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399: 491–496.

    Article  PubMed  Google Scholar 

  • Dong, J., Chen, C. and Chen, Z. 2003. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol. Biol. 51: 21–37.

    Article  PubMed  Google Scholar 

  • Duque, P. and Chua, N.H. 2003. IMB1, a bromodomain protein induced during seed imbibition, regulates ABA-and phyA-mediated responses of germination in Arabidopsis. Plant J. 35: 787–799.

    Article  PubMed  Google Scholar 

  • Evans, N.H., McAinsh, M.R. and Hetherington, A.M. 2001. Calcium oscillations in higher plants. Curr. Opin. Plant Biol. 4: 415–420.

    Article  PubMed  Google Scholar 

  • Florence, B. and Faller, D.V. 2001. You bet-cha: a novel family of transcriptional regulators. Front Biosci. 6: D1008–1018.

    PubMed  Google Scholar 

  • Fromm, H. and Chua, N.-H. 1992. Cloning of plant cDNAs encoding calmodulin-binding proteins using 35S-labeled recombinant calmodulin as a probe. Plant Mol. Biol. Rep. 10: 199–206.

    Google Scholar 

  • Goodman, R.H. and Smolik, S. 2000. CBP/p300 in cell growth, transformation and development. Genes Dev. 14: 1553–1577.

    PubMed  Google Scholar 

  • Gorlich, D. and Mattaj, I.W. 1996. Nucleocytoplasmic transport. Science 271: 1513–1518.

    PubMed  Google Scholar 

  • Grebenok, R.J., Pierson, E., Lambert, G.M., Gong, F.C., Afonso, C.L., Haldeman-Cahill, R., Carrington, J.C. and Galbraith, D.W. 1997. Green-fluorescent protein fusions for efficient characterization of nuclear targeting. Plant J. 11: 573–586.

    Article  PubMed  Google Scholar 

  • Huynh, K.D. and Bardwell, V.J. 1998. The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene 17: 2473–2484.

    Article  PubMed  Google Scholar 

  • Ikura, M., Osawa, M. and Ames, J.B. 2002. The role of calcium-binding proteins in the control of transcription: structure to function. Bioassays 24: 625–636.

    Article  Google Scholar 

  • James, P., Halladay, J. and Craig, E.A. 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144: 1425–1436.

    PubMed  Google Scholar 

  • Jiang, Y.W., Veschambre, P., Erdjument-Bromage, H., Tempst, P., Conaway, J.W., Conaway, R.C. and Kornberg, R.D. 1998. Mammalian mediator of transcriptional regulation and its possible role as an end-point of signal transduction pathways. Proc. Natl. Acad. Sci. USA 95: 8538–8543.

    Article  PubMed  Google Scholar 

  • Kang, H.G. and Singh, K.B. 2000. Characterization of salicylic acid-responsive, arabidopsis Dof domain proteins: overexpression of OBP3 leads to growth defects. Plant J. 21: 329–339.

    Article  PubMed  Google Scholar 

  • Kang, H.M. and Saltveit, M.E. 2002. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol. Plant. 115: 571–576.

    Article  PubMed  Google Scholar 

  • Karpinski, S., Reynolds, H., Karpinska, B., Wingsle, G., Creissen, G. and Mullineaux, P. 1999. Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284: 654–657.

    Article  PubMed  Google Scholar 

  • Kauss, H. and Jeblick, W. 1996. Influence of salicylic acid on the induction of competence for H2O2 elicitation (comparison of ergosterol with other elicitors). Plant Physiol. 111: 755–763.

    PubMed  Google Scholar 

  • Kawano, T., Sahashi, N., Takahashi, K., Uozumi, N. and Muto, S. 1998. Salicylic acid induces extracellular superoxide generation followed by an increase in cytosolic calcium ion in tobacco suspension culture: the earliest events in salicylic acid signal transduction. Plant Cell Physiol. 39: 721–730.

    Google Scholar 

  • Lamb, C. and Dixon, R.A. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Phys. 48: 251–275.

    Article  Google Scholar 

  • Larkindale, J. and Knight, M.R. 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid. Plant Physiol. 128: 682–695.

    Article  PubMed  Google Scholar 

  • Li, G., Hall, T.C. and Holmes-Davis, R. 2002. Plant chromatin: development and gene control. Bioassays 24: 234–243.

    Article  Google Scholar 

  • Martin-Yken, H., Dagkessamanskaia, A., Basmaji, F., Lagorce, A. and Francois, J. 2003. The interaction of Slt2 MAP kinase with Knr4 is necessary for signalling through the cell wall integrity pathway in Saccharomyces cerevisiae. Mol. Microbiol. 49: 23–35.

    Article  PubMed  Google Scholar 

  • Matangkasombut, O. and Buratowski, S. 2003. Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation. Mol. Cell 11: 353–363.

    Article  PubMed  Google Scholar 

  • Matangkasombut, O., Buratowski, R.M., Swilling, N.W. and Buratowski, S. 2000. Bromodomain factor 1 corresponds to a missing piece of yeast TFIID. Genes Dev. 14: 951–962.

    PubMed  Google Scholar 

  • Matt, T. 2002. Transcriptional control of the inflammatory response: a role for the CREB-binding protein (CBP). Acta Med. Austriaca 29: 77–79.

    Article  PubMed  Google Scholar 

  • Mylne, J. and Botella, J.R. 1998. Binary vectors for sense and antisense expression of Arabidopsis ESTs. Plant Mol. Biol. Rep. 16: 257–262.

    Article  Google Scholar 

  • Newton, A.L., Sharpe, B.K., Kwan, A., Mackay, J.P. and Crossley, M. 2000. The transactivation domain within cysteine/histidine-rich region 1 of CBP comprises two novel zinc-binding modules. J. Biol. Chem. 275: 15128–15134.

    Article  PubMed  Google Scholar 

  • Orozco-Cardenas, M.L., Narvaez-Vasquez, J. and Ryan, C.A. 2001. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin and methyl jasmonate. Plant Cell 13: 179–191.

    Article  PubMed  Google Scholar 

  • Pandey, R., Muller, A., Napoli, C.A., Selinger, D.A., Pikaard, C.S., Richards, E.J., Bender, J., Mount, D.W. and Jorgensen, R.A. 2002. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 30: 5036–5055.

    Article  PubMed  Google Scholar 

  • Pauly, N., Knight, M.R., Thuleau, P., van der Luit, A.H., Moreau, M., Trewavas, A.J., Ranjeva, R. and Mazars, C. 2000. Control of free calcium in plant cell nuclei. Nature 405: 754–755.

    Article  PubMed  Google Scholar 

  • Pei, Z.M., Murata, Y., Benning, G., Thomine, S., Klusener, B., Allen, G.J., Grill, E. and Schroeder, J.I. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406: 731–734.

    Article  PubMed  Google Scholar 

  • Ponting, C.P., Blake, D.J., Davies, K.E., Kendrick-Jones, J. and Winder, S.J. 1996. ZZ and TAZ: new putative zinc fingers in dystrophin and other proteins. Trends Biochem. Sci. 21: 11–13.

    Article  PubMed  Google Scholar 

  • Poovaiah, B.W. and Reddy, A.S. 1987. Calcium messenger system in plants. CRC Crit. Rev. Plant Sci. 6: 47–103.

    PubMed  Google Scholar 

  • Rao, M.V., Paliyath, G. and Ormrod, D.P. 1996. Ultraviolet-Band ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 110: 125–136.

    Article  PubMed  Google Scholar 

  • Raz, V. and Fluhr, R. 1992. Calcium requirement for ethylenedependent responses. Plant Cell 4: 1123–1130.

    Article  PubMed  Google Scholar 

  • Reddy, A.S. 2001. Calcium: silver bullet in signaling. Plant Sci. 160: 381–404.

    Article  PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Shirasu, K., Nakajima, H., Rajasekhar, V.K., Dixon, R.A. and Lamb, C. 1997. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9: 261–270.

    Article  PubMed  Google Scholar 

  • Snedden, W.A. and Fromm, H. 2001. Calmodulin as a versatile calcium signal transducer in plants. New Phytol. 151: 35–66.

    Article  Google Scholar 

  • Summermatter, K., Sticher, L. and Metraux, J.P. 1995. Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv syringae. Plant Physiol. 108: 1379–1385.

    PubMed  Google Scholar 

  • Takezawa, D., Ramachandiran, S., Paranjape, V. and Poovaiah, B.W. 1996. Dual regulation of a chimeric plant serine/ threonine kinase by calcium and calcium/calmodulin. J. Biol. Chem. 271: 8126–8132.

    Article  PubMed  Google Scholar 

  • Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., Uknes, S., Kessmann, H. and Ryals, J. 1994. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6: 959–965.

    Article  PubMed  Google Scholar 

  • von Arnim, A.G., Deng, X.W. and Stacey, M.G. 1998. Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants. Gene 221: 35–43.

    Article  PubMed  Google Scholar 

  • Vranova, E., Inze, D. and Van Breusegem, F. 2002. Signal transduction during oxidative stress. J. Exp. Bot. 53: 1227–1236.

    Article  Google Scholar 

  • Yang, T. and Poovaiah, B.W. 2002a. A calmodulin-binding/ CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J. Biol. Chem. 277: 45049–45058.

    Article  PubMed  Google Scholar 

  • Yang, T. and Poovaiah, B.W. 2002b. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc. Natl. Acad. Sci. USA 99: 4097–4102.

    Article  PubMed  Google Scholar 

  • Yang, T. and Poovaiah, B.W. 2003. Calcium/calmodulinmediated signal network in plants. Trends Plant Sci. 8: 505–512.

    Article  PubMed  Google Scholar 

  • Zielinski, R.E. 2002. Characterization of three new members of the Arabidopsis thaliana calmodulin gene family: conserved and highly diverged members of the gene family functionally complement a yeast calmodulin null. Planta 214: 446–455.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, L., Poovaiah, B. A Novel Family of Ca2+/Calmodulin-Binding Proteins Involved in Transcriptional Regulation: Interaction with fsh/Ring3 Class Transcription Activators. Plant Mol Biol 54, 549–569 (2004). https://doi.org/10.1023/B:PLAN.0000038269.98972.bb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLAN.0000038269.98972.bb

Navigation