Skip to main content
Log in

An insect peptide engineered into the tomato prosystemin gene is released in transgenic tobacco plants and exerts biological activity

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Tomato systemin is a signalling peptide produced in response to wounding that locally and systemically activates several defence genes. The peptide is released from the C-terminus of prosystemin, the 200 amino acid precursor, following post-translational modifications involving unknown events and enzymes. In tobacco, two systemin molecules have been recently isolated, neither sharing any sequence homologies with the tomato prosystemin gene/protein, but performing similar functions. We modified the tomato prosystemin gene by replacing the systemin-encoding region with a synthetic sequence encoding TMOF (trypsin-modulating oostatic factor), a 10 amino acid insect peptide hormone toxic to Heliothis virescens larvae, and expressed the chimeric gene in tobacco. The results reported here show that transformed leaves contain the TMOF peptide and exert toxic activity against insect larvae reared on them. In addition, subcellular localization studies showed the cytoplasmic location of the released TMOF, suggesting that in tobacco the enzymes responsible for the post-translational modifications of the tomato precursor protein are present and act in the cytoplasm to recognise the modified prohormone. The molecular engineering of the precursor, beside supplying new clues towards the understanding of prosystemin processing, constitutes an useful tool for plant genetic manipulation, by enabling the delivery of short biological active peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, G., Ebert, P.R., Mitra, A. and Ha, S.B. 1988: Binary vectors. In: G.B. Gelvin, R.A. Schilperoort and D.P.S. Verma (Eds.) Plant Molecular Biology Manual, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. A3: 1–19.

    Google Scholar 

  • Baggerman, G., Huybrechts, J., Clynen, E., Hens, K., Harthoorn, L., van der Horst, D., Poulos, C., de Loof, A. and Schoofs, L. 2002. New insights in adipokinetic hormone (AKH) precursor processing in Locusta migratoria obtained by capillary liquid chromatography-tandem mass spectrometry (1). Peptides 23: 635–644.

    PubMed  Google Scholar 

  • Bergey, D.R., Howe, G.A. and Ryan, C.A. 1996. Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc. Natl. Acad. Sci. USA 93: 12053–12058.

    PubMed  Google Scholar 

  • Bergey, D.R., Orozco-Cardenas, M., deMoura, D.S. and Ryan, C.A. 1999. A wound-and systemin-inducible polygalacturonase in tomato leaves. Proc. Natl. Acad. Sci. USA 96: 1756–1760.

    PubMed  Google Scholar 

  • Borovsky, D., Carlson, D.A., Griffin, P.R., Shabanowitz, J. and Hunt, D.F. 1990. Mosquito oostatic factor: a novel decapeptide modulating trypsin-like enzymes biosynthesis in the midgut. J. Fed. Am. Soc. Exp. Biol. 4: 3015–3020.

    Google Scholar 

  • Borovsky, D., Carlson, D.A., Griffin, P.R., Shabanowitz, J. and Hunt, D.F. 1993. Mass spectrometry and characterization of Aedes aegypti trypsin modulating oostatic factor (TMOF) and its analogs. Insect Biochem. Mol. Biol. 23: 703–712.

    PubMed  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein dye binding. Anal. Biochem. 72: 248–254.

    PubMed  Google Scholar 

  • Constabel, C.P., Yip, L. and Ryan C.A. 1998. Prosystemin from potato, black nightshade and bell pepper: primary structure and biological activity of predicted systemin polypeptides. Plant Mol. Biol. 36: 55–62.

    PubMed  Google Scholar 

  • Delano, J.P., Dombrowski, J.E. and Ryan, C.A. 1999. The expression of tomato prosystemin in Escherichia coli: a structural challenge. Prot. Expr. Purific. 17: 74–82.

    Google Scholar 

  • Dmochowska, A., Dignard, D., Henning, D., Thomas, D.Y. and Bussey, H. 1987. Yeast KEX1 gene encodes a putative protease with a carboxypeptidase B-like function involved in killer toxin and alpha-factor precursor processing. Cell 14: 573–584.

    Google Scholar 

  • Dombrowski, J.E., Pearce, G. and Ryan, C.A. 1999. Proteinase inhibitor-inducing activity of the prohormone prosystemin resides exclusively in the C-terminal systemin domain. Proc. Natl. Acad. Sci. USA 22: 12947–12952.

    Google Scholar 

  • Doyle, J.J. and Doyle, J.L. 1987. Genomic Plant DNA preparation from fresh tissue. Phytochem. Bull. 19: 11–14.

    Google Scholar 

  • D'Hont, K., Bosch, D., Van Damme, J., Goethals, M., Vandekerckhove, J. and Krebbers, E. 1993. An aspartic endoproteinase present in seed cleaves Arabidopsis 2S albumins in vitro. J. Biol. Chem. 268: 20884–20891.

    PubMed  Google Scholar 

  • Einarsson, S., Josefsson, B. and Lagerkvist, S. 1983. Determination of amino acids with 9-fluorenylmethyl chloroformate and reversed-phase high-performance liquid chromatography. J. Chromatogr. 282: 609–618.

    Google Scholar 

  • Francois, I.E., De Bolle, M., Dwyer, G., Goderis, I., Woutors, P., F., Verhaert, P., Proost, P., Schaaper, W., M., Cammue, B. and Broekaert, W. 2002. Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. Plant Physiol. 128: 1346–1358.

    PubMed  Google Scholar 

  • Halpin, C., Cooke, S.E., Barakate, A., El Amrani, A. and Ryan, M., D. 1999. Self-processing 2A-polyproteins: a system for coordinate expression of multiple proteins in transgenic plants. Plant J. 17: 453–459.

    PubMed  Google Scholar 

  • Higo, K., Saito, Y. and Higo, H. 1993. Expression of a chemically synthesised gene for human epidermal growth factor under the control of cauliflower mosaic virus 35S promoter in transgenic tobacco. Biosci. Biotech. Biochem. 57: 1477–1481.

    Google Scholar 

  • Horsh, R.B., Fry, J.E., Hoffmann, N.L., Eicholtz, D., Rogers, S.H. and Fraley, R.T. 1987. A simple and general method for transferring genes in plants. Science 227: 1229–1231.

    Google Scholar 

  • McGurl, B. and Ryan, C.A. 1992. The organization of the prosystemin gene. Plant Mol. Biol. 20: 405–409.

    PubMed  Google Scholar 

  • McGurl, B., Pearce, G., Orozco-Cardenas, M. and Ryan, C.A. 1992. Structure, expression, and antisense inhibition of the systemin precursor gene. Science 20: 1570–1573.

    Google Scholar 

  • McGurl B, Orozco-Cardenas M, Pearce G, Ryan CA. 1994. Overexpression of the prosystemin gene in transgenic tomato plants generates a systemic signal that constitutively induces proteinase inhibitor synthesis. Proc. Natl. Acad. Sci. USA 11: 9799–9802.

    Google Scholar 

  • Nauen, R., Sorge, D., Sterner, A. and Borovsky, D. 2001. TMOFlike factor controls the biosynthesis of serine proteases in the larval gut of Heliothis virescens. Arch. Insect Biochem. Physiol. 47: 169–180.

    PubMed  Google Scholar 

  • Narvaez-Vasquez, J. and Ryan, C.A. 2003. The cellular localization of prosystemin: a functional role for phloem parenchyma in systemic wound signaling. Planta 10.1007/s00425-003-1115-3.

  • Okamoto, M., Mitsuhara, I., Ohshima, M., Natori, S. and Ohashi, Y. 1998. Enhanced expression of an antimicrobial peptide sarcotoxin IA by GUS fusion in transgenic tobacco plants. Plant Cell Physiol. 39: 57–63.

    PubMed  Google Scholar 

  • Pearce, G. and Ryan, C.A. 2003. Systemic signaling in tomato for defense against herbivores: isolation and characterization of three novel defense-signaling glycopeptide hormones coded in a single precursor gene. J. Biol. Chem. 8: 30044–30050.

    Google Scholar 

  • Pearce, G., Moura, D.S., Stratmann, J. and Ryan, C.A. 2001a. RALF, a 5-KDa ubiquitous polypeptide in plants, arrest root growth and development. Proc. Natl. Acad. Sci. USA 22: 12843–12847.

    Google Scholar 

  • Pearce, G., Moura, D.S., Stratmann, J. and Ryan, C.A. 2001b. Production of multiple plant hormones from a single polyprotein precursor. Nature 14: 817–820.

    Google Scholar 

  • Rao, R., Manzi, A., Filippone, E., Manfredi, P., Spasiano, A., Colucci, G., Monti, L. and Malva, C. 1996. Synthesis and expression of genes encoding putative insect neuropeptide precursor in tobacco. Gene 175: 1–5.

    PubMed  Google Scholar 

  • Ryan, C.A., Pearce, G., Scheer, J., and Moura, D. 2002. Polypeptide hormone. Plant Cell 14: S251–S264.

    PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Schaller, A. 1998. Action of proteolysis-resistant systemin analogues in wound signalling. Phytochemistry 47: 605–612.

    PubMed  Google Scholar 

  • Schaller, A. and Ryan, C.A. 1994. Identification of a 50-kDa systemin-binding protein in tomato plasma membranes having Kex2p like properties. Proc. Natl. Acad. Sci. USA 91: 11802–11806.

    PubMed  Google Scholar 

  • Scheer, J.M. and Ryan C.A. 1999. A 160-kD systemin receptor on the surface of Lycopersicon peruvianum cultured cells. Plant Cell 11: 1525–1535.

    PubMed  Google Scholar 

  • Seidach, N.G., Chretien, M. and Day, R. 1994. The family of subtilisin/kexin like pro-protein and pro-hormone convertase: divergent or shared functions. Biochimie 76: 197–209.

    PubMed  Google Scholar 

  • Sokal, R.R. and Rohlf, F.J. 1995. Biometry, 3rd ed. Freeman, New York.

    Google Scholar 

  • Steiner, D.F., Smeekens, S.P., Ohagi, S. and Chan, S.J. 1992. The new enzymology of precursor processing endoproteases. J. Biol. Chem. 267: (AUTHOR: PLEASE FILL IN PAGES).

  • SPSS Inc. 1999. Systat for Windows Statistics I, 660 pp.

  • Tortiglione, C., Malva, C., Pennacchio, F. and Rao, R. 1999. New genes for pest control. In: Scarascia Mugnozza, G.T., Porceddu, E. and Magnotta, E.A. (Eds.) Genetics and Breeding for Crop Quality and Resistance, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 159–163.

    Google Scholar 

  • Tortiglione, C., Fanti, P., Pennacchio, F., Malva, C., Breuer, M., De Loof, A., Monti, L., Tremblay E. and Rao, R. 2002. The expression in tobacco plants of Aedes aegypti Trypsin Modulating Oostatic Factor (Aea-TMOF) alters growth and development of the tobacco budworm, Heliothis virescens. Mol. Breed. 9: 159–169.

    Google Scholar 

  • Verwoerd, T.C., van Paridon, P.A., van Ooyen, A.J.J., van Lent, J.W.M., Hoekema, A. and Pen, J. 1995. Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol. 109: 1199–1205.

    PubMed  Google Scholar 

  • Vetsch, M., Janzik, I. and Shaller, A. 2000. Characterization of prosystemin expressed in the baculovirus/insect cell system reveals biological activity of the systemin precursor. Planta 211: 91–97.

    PubMed  Google Scholar 

  • Yang, H., Matsubayashi, Y., Nakamura, K. and Sakagami, Y. 1999. Oryza sativa PSK gene encodes a precursor of phytosulfokine-α, a sulfated peptide growth factor found in plants. Proc. Natl. Acad. Sci. USA 23: 13560–13565.

    Google Scholar 

  • Yang, H., Matsubayashi, Y., Nakamura, K. and Sakagami, Y. 2001. Diversity of Arabidopsis genes encoding precursor for phytosulfokines, a peptide growth factor. Plant Physiol. 127: 842–851.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tortiglione, C., Fogliano, V., Ferracane, R. et al. An insect peptide engineered into the tomato prosystemin gene is released in transgenic tobacco plants and exerts biological activity. Plant Mol Biol 53, 891–902 (2003). https://doi.org/10.1023/B:PLAN.0000023667.62501.ef

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLAN.0000023667.62501.ef

Navigation