Skip to main content
Log in

Identification and analysis of expressed resistance gene sequences in wheat

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Forty-eight resistance (R) genes conferring resistance to various types of pests have been cloned from 12 plant species. Irrespective of the host or the pest type, most R genes share a strong protein sequence similarity especially for domains and motifs. The objective of this study was to identify expressed R genes of wheat, the fraction of which is expected to be very low in the genome. Using modified RNA fingerprinting and data mining approaches we identified 220 expressed R-gene candidates. Of these, 125 sequences structurally resembled known R genes. In addition to 25–87% protein sequence similarity with the known R genes, the sequence, order, and distribution of the domains and motifs were also the same. Among the remaining 95, 17 were probable R-related, 21 were a new class of nucleotide-binding kinases, 21 were probable kinases, and 36 were p-loop-containing unknown sequences. About 76% were rare including 73 novel sequences. Three new R-gene specific motifs were also identified. Physical mapping of the 164 best R-gene candidates on 339 deletion lines localized 121 mappable R-gene candidates to 26 small chromosomal regions encompassing about 16% of the genome. About 90 of the 110 phenotypically characterized wheat R genes corresponding to 18 different pests also mapped in these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucl. Acids Res 25: 3389–3402.

    PubMed  Google Scholar 

  • Arumuganathan, K. and Earle, E.D. 1991. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9: 208–218.

    Google Scholar 

  • Botella, M.A., Coleman, M.J., Hughes, D.E., Nishimura, M.T., Jones, J.D. and Somerville, S.C. 1997. Map positions of 47 Arabidopsis sequences with sequence similarity to disease resistance genes. Plant J. 12: 1197–1211.

    PubMed  Google Scholar 

  • Brueggeman, R., Rostoks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., Druka, A., Steffenson, B. and Kleinhofs. A. 2002. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc. Natl. Acad. Sci. USA 20: 20.

    Google Scholar 

  • Buschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., Topsch, S., Vos, P., Salamini, F. and Schulze-Lefert, P. 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88: 695–705.

    PubMed  Google Scholar 

  • Cai, D., Kleine, M., Kifle, S., Harloff, H.J., Sandal, N.N., Marcker, K.A., Klein-Lankhorst, R.M., Salentijn, E.M., Lange, W., Stiekema, W.J., Wyss, U., Grundler, F.M. and Jung, C. 1997. Positional cloning of a gene for nematode resistance in sugar beet. Science 275: 832–834.

    PubMed  Google Scholar 

  • Chin, D.B., Arroya-Garcia, R., Ochoa, O.E., Keselli, R.V., Lavelle, D.O. and Michelmore, R.W. 2001. Recombination and spontaneous mutation at the major cluster of resistance genes in lettuce (Lactuca sativa). Genetics 157: 831–849.

    PubMed  Google Scholar 

  • Collins, N.C., Webb, C.A., Seah, S., Ellis, J.G., Hulbert, S.H. and Pryor, A. 1998. The isolation and mapping of disease resistance gene analogs in maize. Mol. Plant-Microbe Interact. 11: 968–978.

    PubMed  Google Scholar 

  • Cooley, M.B., Pathirana, S., Wu, H.J., Kachroo, P. and Klessig, D.F. 2000. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12: 663–676.

    PubMed  Google Scholar 

  • Dilbirligi, M., Erayman, M., Sandhu, D., Sidhu, D. and Gill, K.S. 2003. Identification of wheat chromosomal regions containing expressed resistance genes. Genetics, in press.

  • Dixon, M.S., Jones, D.A., Keddie, J.S., Thomas, C.M., Harrison, K. and Jones, J.D. 1996. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84: 451–459.

    PubMed  Google Scholar 

  • Endo, T.R. and Gill, B.S. 1996. The deletion stocks of common wheat. J. Hered. 87: 295–307.

    Google Scholar 

  • Ernst, K., Kumar, A., Kriseleit, D., Kloos, D.U., Phillips, M.S. and Ganal, M.W. 2002. The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J. 31: 127–136.

    PubMed  Google Scholar 

  • Gill, K.S. and Gill, B.S. 1994. Mapping in the realm of polyploidy: the wheat model. BioEssays 16: 841–846.

    Google Scholar 

  • Gill, K.S., Gill, B.S., Endo, T.R. and Boyko, E.V. 1996a. Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143: 1001–1012.

    PubMed  Google Scholar 

  • Gill, K.S., Gill, B.S., Endo, T.R. and Taylor, T. 1996b. Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144: 1883–1891.

    PubMed  Google Scholar 

  • Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., Hadley, D., Hutchison, D., Martin, C., Katagiri, F., Lange, B.M., Moughamer, T., Xia, Y., Budworth, P., Zhong, J., Miguel, T., Paszkowski, U., Zhang, S., Colbert, M., Sun, W.L., Chen, L., Cooper, B., Park, S., Wood, T.C., Mao, L., Quail, P., Wing, R., Dean, R., Yu, Y., Zharkikh, A., Shen, R., Sahasrabudhe, S., Thomas, A., Cannings, R., Gutin, A., Pruss, D., Reid, J., Tavtigian, S., Mitchell, J., Eldredge, G., Scholl, J., Miller, R.M., Bhatnagar, S., Adey, N., Rubano, T., Tusneem, N., Robinson, R., Feldhaus, J., Macalma, T., Oliphant, A. and Briggs, S. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92–100.

    PubMed  Google Scholar 

  • Hammond-Kosack, K. and Jones, J. 1997. Plant disease resistance genes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 575–608.

    PubMed  Google Scholar 

  • Johal, G.S. and Briggs, S.P. 1992. Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258: 985–987.

    PubMed  Google Scholar 

  • Kanazin, V., Marek, L.F. and Shoemaker, R.C. 1996. Resistance gene analogs are conserved and clustered in soybean. Proc. Natl. Acad. Sci. USA 93: 11746–11750.

    PubMed  Google Scholar 

  • Kawchuk, L.M., Hachey, J., Lynch, D.R., Kulcsar, F., van Rooijen, G., Waterer, D.R., Robertson, A., Kokko, E., Byers, R., Howard, R.J., Fischer, R. and Prufer, D. 2001. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc. Natl. Acad. Sci. USA 98: 6511–6515.

    PubMed  Google Scholar 

  • Kihara, H. 1944. Discovery of the DD-analyser, one of the ancestors of vulgare wheats. Agric. Hort. 19: 889–890.

    Google Scholar 

  • Leister, D., Ballvora, A., Salamini, F. and Gebhardt, C. 1996. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genet. 14: 421–429.

    PubMed  Google Scholar 

  • Liu, G.Z., Pi, L.Y., Walker, J.C., Ronald, P.C. and Song, W.Y. 2002. Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21. J. Biol. Chem. 277: 20264–20269.

    PubMed  Google Scholar 

  • Martin, G.B., Brommonschenkel, Chunwongse, J., Frary, A., Ganal, M.W., Spivey, R., Wu, T., Earle, E.D. and Tanksley, S.D. 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262: 1432–1436.

    PubMed  Google Scholar 

  • McIntosh, R.A., Hart, G.E., Devos, K.M., Gale, M.D. and Rogers, W.J. 2000. Catalogue of gene symbols for wheat suplemental. In: Proceedings of the 9th International Wheat Genetics Symposium, University Extension Press, University of Saskatchewan, Saskatoon, Canada, p. 235.

    Google Scholar 

  • Meyers, B.C., Dickerman, A.W., Michelmore, R.W., Sivaramakrishnan, S., Sobral, B.W. and Young, N.D. 1999. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 20: 317–332.

    PubMed  Google Scholar 

  • Michelmore, R.W. and Meyers, B.C. 1998. Clusters of resistance genes in plants evolve by divergent selection and a birth-anddeath process. Genome Res. 8: 1113–1130.

    PubMed  Google Scholar 

  • Mondragon-Palomino, M., Meyers, B.C., Michelmore, R.W. and Gaut, B.S. 2002. Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Res. 12: 1305–1315.

    PubMed  Google Scholar 

  • Noel, L., Moores, T.L., van der Biezen, E.A., Parniske, E.M., Daniels, M.J., Parker, J.E. and Jones, J.D. 1999. Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell 11: 2099–2112.

    PubMed  Google Scholar 

  • Pan, Q., Wendel, J. and Fluhr, R. 2000. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J. Mol. Evol. 50: 203–213.

    PubMed  Google Scholar 

  • Pimental, D., Wilson, C., McCallum, C., Huang, R., Dwen, P., Flack, J., Tran, Q., Saltman, T. and Cliff, B. 1997. Economical and environmental benefits of biodiversity. BioScience 47: 747–757.

    Google Scholar 

  • Richly, E., Kurth, J. and Leister, D. 2002. Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol. Biol. Evol. 19: 76–84.

    PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Sandhu, D., Champoux, J.A., Bondareva, S.N. and Gill, K.S. 2001. Identification and physical localiztion of useful genes and markers to a major gene-rich region on wheat group 1S chromosomes. Genetics 157: 1735–1747.

    PubMed  Google Scholar 

  • Sandhu, D. and Gill, K.S. 2002a. Gene-containing regions of wheat and the other grass genomes. Plant Physiol. 128: 803–811.

    PubMed  Google Scholar 

  • Sandhu, D. and Gill, K.S. 2002b. Structural and functional organization of the ‘1S0.8 gene-rich region’ in the Triticeae. Plant Mol. Biol. 48: 791–804.

    PubMed  Google Scholar 

  • SanMiguel, P., Tikhonov, A., Jin, Y.K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., Springer, P.S., Edwards, K.J., Lee, M., Avramova, A. and Bennetzen, J.L. 1996. Nested retrotransposons in the intergenic regions of the maize genome see comments. Science 274: 765–768.

    PubMed  Google Scholar 

  • Sears, E.R. 1954. The aneuploids of common wheat. Research Bulletin 572, University of Missouri Agricultural Experiment Station: 1–58.

  • Shen, K.A., Chin, D.B., Arroyo-Garcia, R., Ochoa, O.E., Lavelle, D.O., Wroblewski, T., Meyers, B.C. and Michelmore, R.M. 2002. Dm3 is one member of a large constitutively expressed family of nucleotide binding site-leucine-rich repeat encoding genes. Mol. Plant-Microbe Interact. 15: 251–261.

    PubMed  Google Scholar 

  • Shen, K.A., Meyers, B.C., Islam-Faridi, M.N., Chin, D.B., Stelly, D.M. and Michelmore, R.W. 1998. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol. Plant-Microbe Interact. 11: 815–823.

    PubMed  Google Scholar 

  • Song, W.Y., Wang, G.L., Chen, L.L., Kim, H.S., Pi, L.Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.X., Zhu, L.H. et al., 1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270: 1804–1806.

    PubMed  Google Scholar 

  • Sun, Q., Collins, N.C., Ayliffe, M., Simith, S.M., Drake, J., Pryor, T. and Hulbert, S.H. 2001. Recombination between paralogues at the Rp1 rust resistance locus in maize. Genetics 158: 423–438.

    PubMed  Google Scholar 

  • Swiderski, M.R. and Innes, R.W. 2001. The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J. 26: 101–112.

    PubMed  Google Scholar 

  • TAGI. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.

    Google Scholar 

  • Tameling, W.I., Elzinga, S.D., Darmin, P.S., Vossen, J.H., Takken, F.L., Haring, M.A. and Cornelissen, B.J. 2002. The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14: 2929–2939.

    PubMed  Google Scholar 

  • Traut, T.W. 1994. The functions and consensus motifs of nine types of peptide segments that form different types of nucleotidebinding sites. Eur. J. Biochem. 222: 9–19.

    PubMed  Google Scholar 

  • van der Biezen, E.A. and Jones, J.D. 1998. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem. Sci. 23: 454–456.

    PubMed  Google Scholar 

  • Wendel, J.F. 2000. Genome evolution in polyploids. Plant Mol. Biol. 42: 225–249.

    PubMed  Google Scholar 

  • Xiao, S., Ellwood, S., Calis, O., Patrick, E., Li, T., Coleman, M. and Turner, J.G. 2001. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291: 118–120.

    PubMed  Google Scholar 

  • Yu, Y.G., Buss, G.R. and Maroof, M.A. 1996. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc. Natl. Acad. Sci. USA 93: 11751–11756.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kulvinder S. Gill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dilbirligi, M., Gill, K.S. Identification and analysis of expressed resistance gene sequences in wheat. Plant Mol Biol 53, 771–787 (2003). https://doi.org/10.1023/B:PLAN.0000023663.55701.5f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLAN.0000023663.55701.5f

Navigation