Skip to main content
Log in

New Technologies: Bioluminescence Resonance Energy Transfer (BRET) for the Detection of Real Time Interactions Involving G-Protein Coupled Receptors

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

The natural phenomenon of bioluminescence resonance energy transfer (BRET) has become an extremely useful tool for studying protein-protein interactions in the laboratory, including those involving G-protein coupled receptors (GPCRs). The technology involves fusion of donor and acceptor molecules to proteins of interest. Following assessment to ensure correct functionality, co-expression of fusion constructs in live cells enables their interaction to be studied in real time in a quantitative manner. Energy is transferred from the donor to the acceptor when in close proximity, resulting in fluorescence emission at a characteristic wavelength. The energy emitted by the acceptor relative to that emitted by the donor is termed the BRET signal. It is dependent upon the spectral properties, ratio, distance and relative orientation of the donor and acceptor molecules, as well as the strength and stability of the interaction between the proteins of interest. The ability to study interactions in live mammalian cells circumvents many of the problems associated with techniques such as co-immunoprecipitation and yeast two-hybrid screening. Furthermore, the high sensitivity of BRET enables the study of proteins at physiological concentrations, a significant advantage over techniques that require high levels of protein expression. BRET technology has already made a substantial contribution to our understanding of GPCRs and protein-protein interactions, in particular by providing strong evidence that GPCRs homo- and hetero-oligomerize. New BRET detection systems and the potential for novel high throughput screening applications means that BRET promises to play an important role in future research and drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldwin JM. Structure and function of receptors coupled to G proteins. Curr Opin Cell Biol 1994;6:180.

    PubMed  Google Scholar 

  2. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, fingerprints. Mol Pharmacol 2003;63:1256.

    PubMed  Google Scholar 

  3. Khorana HG. Rhodopsin, photoreceptor of the rod cell. An emerging pattern for structure and function. J Biol Chem 1992;267:1.

    PubMed  Google Scholar 

  4. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000;289:739.

    Article  PubMed  Google Scholar 

  5. Perez DM. The evolutionarily triumphant G-protein-coupled receptor. Mol Pharmacol 2003;63:1202.

    PubMed  Google Scholar 

  6. Flower DR. Modelling G-protein-coupled receptors for drug design. Biochim Biophys Acta 1999;1422:207.

    PubMed  Google Scholar 

  7. Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov 2002;1:727.

    PubMed  Google Scholar 

  8. Wess J. Molecular basis of receptor/G-protein-coupling selectivity. Pharmacol Ther 1998;80:231.

    PubMed  Google Scholar 

  9. Ulloa-Aguirre A, Stanislaus D, Janovick JA, Conn PM. Structure-activity relationships of G protein-coupled receptors. Arch Med Res 1999;30:420.

    PubMed  Google Scholar 

  10. Brady AE, Limbird LE. G protein-coupled receptor interacting proteins: Emerging roles in localization and signal transduction. Cell Signal 2002;14:297.

    PubMed  Google Scholar 

  11. Hart RC, Stempel KE, Boyer PD, Cormier MJ.Mechanism of the enzyme-catalyzed bioluminescent oxidation of coelenteratetype luciferin. Biochem Biophys Res Commun 1978;81:980.

    PubMed  Google Scholar 

  12. Wilson T, Hastings JW. Bioluminescence. Annu Rev Cell Dev Biol 1998;14:197.

    PubMed  Google Scholar 

  13. Morin JG, Hastings JW. Energy transfer in a bioluminescent system. J Cell Physiol 1971;77:313.

    PubMed  Google Scholar 

  14. Lorenz WW, McCann RO, Longiaru M, Cormier MJ. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci USA 1991;88:4438.

    PubMed  Google Scholar 

  15. McLean AJ, Milligan G. Ligand regulation of green fluorescent protein-tagged forms of the human beta(1)-and beta(2)-adrenoceptors; comparisons with the unmodified receptors. Br J Pharmacol 2000;130:1825.

    PubMed  Google Scholar 

  16. Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M, Bouvier M. Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci USA 2000;97:3684.

    PubMed  Google Scholar 

  17. Kroeger KM, Hanyaloglu AC, Seeber RM, Miles LE, Eidne KA. Constitutive and agonist-dependent homo-oligomerization of the thyrotropin-releasing hormone receptor. Detection in living cells using bioluminescence resonance energy transfer. J Biol Chem 2001;276:12736.

    PubMed  Google Scholar 

  18. Hanyaloglu AC, Seeber RM, Kohout TA, Lefkowitz RJ, Eidne KA. Homo-and hetero-oligomerization of thyrotropin-releasing hormone (TRH) receptor subtypes. Differential regulation of beta-arrestins 1 and 2. J Biol Chem 2002;277: 50422.

    PubMed  Google Scholar 

  19. Terrillon S, Durroux T, Mouillac B, Breit A, Ayoub MA, Taulan M, Jockers R, Barberis C, Bouvier M. Oxytocin and vasopressin V1a and V2 receptors Form constitutive homo-and heterodimers during biosynthesis. Mol Endocrinol 2003;17:677.

    PubMed  Google Scholar 

  20. Jensen AA, Hansen JL, Sheikh SP, Brauner-Osborne H. Probing intermolecular protein-protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET). Eur J Biochem 2002;269:5076.

    PubMed  Google Scholar 

  21. Yoshioka K, Saitoh O, Nakata H. Agonist-promoted heteromeric oligomerization between adenosine A(1) and P2Y(1) receptors in living cells. FEBS Lett 2002;523:147.

    PubMed  Google Scholar 

  22. Svartz J, Blomgran R, Hammarström S, Söderström M. Leukotriene C4 synthase homo-oligomers detected in living cells by bioluminescence resonance energy transfer. Biochim Biophys Acta 2003;1633:90.

    PubMed  Google Scholar 

  23. Vrecl M, Anderson L, Hanyaloglu A, McGregor AM, Groarke AD, Milligan G, Taylor PL, Eidne KA. Agonist-induced endocytosis and recycling of the gonadotropin-releasing hormone receptor: Effect of beta-arrestin on internalization kinetics. Mol Endocrinol 1998;12:1818.

    PubMed  Google Scholar 

  24. Heding A, Vrecl M, Hanyaloglu AC, Sellar R, Taylor PL, Eidne KA. The rat gonadotropin-releasing hormone receptor internalizes via a beta-arrestin-independent, but dynamindependent, pathway: Addition of a carboxyl-terminal tail confers beta-arrestin dependency. Endocrinology 2000;141:299.

    PubMed  Google Scholar 

  25. Xu Y, Piston DW, Johnson CH. A bioluminescence resonance energy transfer (BRET) system: Application to interacting circadian clock proteins. Proc Natl Acad Sci USA 1999;96:151.

    PubMed  Google Scholar 

  26. Gomes I, Filipovska J, Jordan BA, Devi LA. Oligomerization of opioid receptors. Methods 2002;27:358.

    PubMed  Google Scholar 

  27. Mercier JF, Salahpour A, Angers S, Breit A, Bouvier M. Quantitative assessment of beta 1-and beta 2-adrenergic receptor homo-and heterodimerization by bioluminescence resonance energy transfer. J Biol Chem 2002;277:44925.

    PubMed  Google Scholar 

  28. Wu P, Brand L. Resonance energy transfer: Methods and applications. Anal Biochem 1994;218:1.

    PubMed  Google Scholar 

  29. Hirsch JA, Schubert C, Gurevich VV, Sigler PB. The 2.8Acrystal structure of visual arrestin: A model for arrestin's regulation. Cell 1999;97:257.

    PubMed  Google Scholar 

  30. Förster T. Zwischenmolekulare energiewanderung und fluoreszenz. Annu Phys 1948;2:54.

    Google Scholar 

  31. Kenworthy AK. Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. Methods 2001;24:289.

    PubMed  Google Scholar 

  32. Angers S, Salahpour A, Bouvier M. Biochemical and biophysical demonstration of GPCR oligomerization in mammalian cells. Life Sci 2001;68:2243.

    PubMed  Google Scholar 

  33. Coates PJ, Hall PA. The yeast two-hybrid system for identifying protein-protein interactions. J Pathol 2003;199:4.

    PubMed  Google Scholar 

  34. Griffiths WJ, Cox TM. Co-localization of the mammalian hemochromatosis gene product (HFE) and a newly identified transferrin receptor (TfR2) in intestinal tissue and cells. J Histochem Cytochem 2003;51:613.

    PubMed  Google Scholar 

  35. Selvin PR. The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 2000;7:730.

    PubMed  Google Scholar 

  36. van Roessel P, Brand AH. Imaging into the future: Visualizing gene expression and protein interactions with fluorescent proteins. Nat Cell Biol 2002;4:E15.

    PubMed  Google Scholar 

  37. Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY. Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 1995;20:448.

    PubMed  Google Scholar 

  38. Boute N, Jockers R, Issad T. The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol Sci 2002;23:351.

    PubMed  Google Scholar 

  39. Zacharias DA. Sticky caveats in an otherwise glowing report: Oligomerizing fluorescent proteins and their use in cell biology. Sci STKE 2002;2002:PE23.

    PubMed  Google Scholar 

  40. Arai R, Nakagawa H, Tsumoto K, Mahoney W, Kumagai I, Ueda H, Nagamune T. Demonstration of a homogeneous noncompetitive immunoassay based on bioluminescence resonance energy transfer. Anal Biochem 2001;289:77.

    PubMed  Google Scholar 

  41. Eidne KA, Kroeger KM, Hanyaloglu AC. Applications of novel resonance energy transfer techniques to study dynamic hormone receptor interactions in living cells. Trends Endocrinol Metab 2002;13:415.

    PubMed  Google Scholar 

  42. Ayoub MA, Couturier C, Lucas-Meunier E, Angers S, Fossier P, Bouvier M, Jockers R. Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J Biol Chem 2002;277:21522.

    PubMed  Google Scholar 

  43. Ramsay D, Kellett E, McVey M, Rees S, Milligan G. Homo-and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): Hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences. Biochem J 2002;365:429.

    PubMed  Google Scholar 

  44. Tarasova NI, Stauber RH, Choi JK, Hudson EA, Czerwinski G, Miller JL, Pavlakis GN, Michejda CJ, Wank SA. Visualization of G protein-coupled receptor trafficking with the aid of the green fluorescent protein. Endocytosis and recycling of cholecystokinin receptor type A. J Biol Chem 1997;272: 14817.

    PubMed  Google Scholar 

  45. Bouvier M. Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci 2001;2:274.

    PubMed  Google Scholar 

  46. Milligan G. Oligomerisation of G-protein-coupled receptors. J Cell Sci 2001;114:1265.

    PubMed  Google Scholar 

  47. Angers S, Salahpour A, Bouvier M. Dimerization: An emerging concept forGprotein-coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol 2002;42:409.

    PubMed  Google Scholar 

  48. Hanyaloglu AC, Kroeger KM, Eidne KA. G-protein coupled receptor oligomerization. Pharm News 2002;9:317.

    Google Scholar 

  49. Germain-Desprez D, Bazinet M, Bouvier M, Aubry M. Oligomerization of transcriptional intermediary factor 1 regulators and interaction with ZNF74 nuclear matrix protein revealed by bioluminescence resonance energy transfer in living cells. J Biol Chem 2003;278:22367.

    PubMed  Google Scholar 

  50. Veatch W, Stryer L. The dimeric nature of the gramicidin A transmembrane channel: Conductance and fluorescence energy transfer studies of hybrid channels. J Mol Biol 1977;113:89.

    PubMed  Google Scholar 

  51. Roda A, Guardigli M, Pasini P, Mirasoli M. Bioluminescence and chemiluminescence in drug screening. Anal Bioanal Chem 2003;377:826.

    PubMed  Google Scholar 

  52. Boute N, Pernet K, Issad T. Monitoring the activation state of the insulin receptor using bioluminescence resonance energy transfer. Mol Pharmacol 2001;60:640.

    PubMed  Google Scholar 

  53. Issad T, Boute N, Pernet K. A homogenous assay to monitor the activity of the insulin receptor using Bioluminescence Resonance Energy Transfer. Biochem Pharmacol 2002;64:813.

    PubMed  Google Scholar 

  54. Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC. Receptors for dopamine and somatostatin: Formation of hetero-oligomers with enhanced functional activity. Science 2000;288:154.

    PubMed  Google Scholar 

  55. Lavoie C, Mercier JF, Salahpour A, Umapathy D, Breit A, Villeneuve LR, Zhu WZ, Xiao RP, Lakatta EG, Bouvier M, Hebert TE. Beta 1/beta 2-adrenergic receptor heterodimerization regulates beta 2-adrenergic receptor internalization and ERK signaling efficacy. J Biol Chem 2002;277:35402.

    PubMed  Google Scholar 

  56. He L, Fong J, von Zastrow M, Whistler JL. Regulation of opioid receptor trafficking and morphine tolerance by receptor oligomerization. Cell 2002;108:271.

    PubMed  Google Scholar 

  57. AbdAlla S, Lother H, el Massiery A, Quitterer U. Increased AT1 receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat Med 2001;7:1003.

    PubMed  Google Scholar 

  58. Luttrell LM, Lefkowitz RJ. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 2002;115:455.

    PubMed  Google Scholar 

  59. Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ. Beta-arrestin: A novel protein that regulates beta-adrenergic-receptor function. Science 1990;248:1547.

    PubMed  Google Scholar 

  60. McVey M, Ramsay D, Kellett E, Rees S, Wilson S, Pope AJ, Milligan G. Monitoring receptor oligomerization using timeresolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human delta-opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J Biol Chem 2001;276:14092.

    PubMed  Google Scholar 

  61. Issafras H, Angers S, Bulenger S, Blanpain C, Parmentier M, Labbe-Jullie C, Bouvier M, Marullo S. Constitutive agonistindependent CCR5 oligomerization and antibody-mediated clustering occurring at physiological levels of receptors. J Biol Chem 2002;277:34666.

    PubMed  Google Scholar 

  62. Babcock GJ, Farzan M, Sodroski J. Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor. J Biol Chem 2003;278:3378.

    PubMed  Google Scholar 

  63. Kamiya T, Saitoh O, Yoshioka K, Nakata H. Oligomerization of adenosine A2A and dopamine D2 receptors in living cells. Biochem Biophys Res Commun 2003;306:544.

    PubMed  Google Scholar 

  64. Cheng ZJ, Miller LJ. Agonist-dependent dissociation of oligomeric complexes of G protein-coupled cholecystokinin receptors demonstrated in living cells using bioluminescence resonance energy transfer. J Biol Chem 2001;276:48040.

    PubMed  Google Scholar 

  65. Nussenzveig DR, Heinflink M, Gershengorn MC. Agoniststimulated internalization of the thyrotropin-releasing hormone receptor is dependent on two domains in the receptor carboxyl terminus. J Biol Chem 1993;268:2389.

    PubMed  Google Scholar 

  66. Yu R, Hinkle PM. Signal transduction and hormone-dependent internalization of the thyrotropin-releasing hormone receptor in cells lacking Gq and G11. J Biol Chem 1999;274:15745.

    PubMed  Google Scholar 

  67. Drmota T, Milligan G. Kinetic analysis of the internalization and recycling of [3H]TRH and C-terminal truncations of the long isoform of the rat thyrotropin-releasing hormone receptor-1. Biochem J 2000;346(Pt 3):711.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfleger, K.D.G., Eidne, K.A. New Technologies: Bioluminescence Resonance Energy Transfer (BRET) for the Detection of Real Time Interactions Involving G-Protein Coupled Receptors. Pituitary 6, 141–151 (2003). https://doi.org/10.1023/B:PITU.0000011175.41760.5d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PITU.0000011175.41760.5d

Navigation