Skip to main content
Log in

Response of Spinach Leaves (Spinacia oleracea L.) to Ozone Measured by Gas Exchange, Chlorophyll a Fluorescence, Antioxidant Systems, and Lipid Peroxidation

  • Published:
Photosynthetica

Abstract

Spinach (Spinacia oleracea L. cv. Clermont) leaves grown in open-top chambers and exposed to three different concentrations of ozone were measured for gas exchange, chlorophyll a fluorescence, antioxidant systems, and lipid peroxidation at the end of growing season. High O3 concentration reduced Fv/Fm, indicating that the efficiency in the energy conversion of photosystem 2 (PS2) was altered. The rate of non-cyclic electron transport rate and the capacity to reduce the quinone pool were also affected. The development of non-photochemical quenching was not high enough to decrease the photon excess in the PS2. The limitation of photosynthetic activity was probably correlated with stomata closure and with an increase in intercellular CO2 concentration. Under oxidative stress, superoxide dismutase (SOD) activity was stimulated in parallel with lipid peroxidation. We did not find any differences in the ascorbate (AsA) pool and ascorbate peroxidase (APX) or glutathione reductase (GR) activities between air qualities. Small, but similar responses were observed in spinach leaves exposed to ambient ozone concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, N.R., Nie, G., Tamasevic, M.: Responses of photo-synthetic light-use efficiency and chloroplast development on exposure of leaves to ozone.-In: Alscher, R.G., Wellburn, A.R. (ed.): Plant Responses to the Gaseous Environment: Molecular, Metabolic and Physiological Aspects. Pp. 219-238. Chapman and Hall, London 1994.

    Google Scholar 

  • Barnes, J., Davison, A., Balaguer, L., Manrique-Reol, E.: Resistance to air pollutants: from cell to community.-In: Pugnaire, F.I., Valladares, F. (ed.): Handbook of Functional Plant Ecology. Pp. 735-770. Marcel Dekker, New York-Basel 1999.

    Google Scholar 

  • Bender, J., Weigel, H.J., Wegner, U., Jager, H.J.: Response of cellular antioxidants to ozone in wheat flag leaves at different stages of plant development.-Environ. Pollut. 84: 15-21, 1994.

    Google Scholar 

  • Beyer, W.F., Fridovich, I.: Assaying of superoxide dismutase activity: some large consequences of minor changes in conditions.-Anal. Biochem. 161: 559-566, 1987.

    Google Scholar 

  • Bilger, W., Björkman, O.: Temperature dependence of viola-xanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L.-Planta 184: 226-234, 1991.

    Google Scholar 

  • Bowler, C., van Montagu, M., Inzé, D.: Superoxide dismutase and stress tolerance.-Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 83-116, 1992.

    Google Scholar 

  • Cakmak, I., Marschner, H.: Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves.-Plant Physiol. 98: 1222-1227, 1992.

    Google Scholar 

  • Calatayud, A., Alvarado, J.W., Barreno, E.: Differences in ozone sensitivity in three varieties of cabbage (Brassica oleracea L.) in the rural Mediterranean area.-J. Plant Physiol. 159: 863-868, 2002a.

    Google Scholar 

  • Calatayud, A., Barreno, E.: Foliar spraying with zineb increases fruit productivity and alleviates oxidative stress in two tomato cultivars.-Photosynthetica 38: 149-154, 2000.

    Google Scholar 

  • Calatayud, A., Barreno, E.: Chlorophyll a fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl.-Environ. Pollut. 115: 283-289, 2001.

    Google Scholar 

  • Calatayud, A., Ramirez, J.W., Iglesias, D.J., Barreno, E.: Ef-fects of ozone on photosynthetic CO2 exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves.-Physiol. Plant. 116: 308-316, 2002b.

    Google Scholar 

  • Castillo, F.J., Greppin, H.: Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album L. leaves after ozone exposure.-Environ. exp. Bot. 28: 231-238, 1988.

    Google Scholar 

  • Ciompi, S., Castagna, A., Ranieri, A., Nali, C., Lorenzini, G., Soldatini, G.F.: CO2 assimilation, xanthophyll cycle pigments and PSII efficiency in pumpkin plants as affected by ozone fumigation.-Physiol. Plant. 101: 881-889, 1997.

    Google Scholar 

  • Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senes-cence: correlated with increased levels of membrane perme-ability and lipid peroxidation, and decreased levels of super-oxide dismutase and catalase.-J. exp. Bot. 32: 93-101, 1981.

    Google Scholar 

  • Eckardt, N.A., Pell, E.J.: Oxidative modification of Rubisco from potato foliage in response to ozone.-Plant Physiol. Biochem. 33: 273-282, 1995.

    Google Scholar 

  • Elstner, E.F., Wagner, G.A., Schutz, W.: Activated oxygen in green plants in relation to stress situations.-In: Randall, D.D., Blevins, D.G., Campbell, W.H. (ed.): Current Topics Plant Biochemistry and Physiology. Vol. 7. Pp. 159-187. University of Missouri, Columbia 1988.

    Google Scholar 

  • Farage, P.K.: The effect of ozone fumigation over one season on photosynthetic process of Quercus robur seedling.-New Phytol. 134: 279-285, 1996.

    Google Scholar 

  • Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron trans-port and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta 990: 87-92, 1989.

    Google Scholar 

  • Gimeno, B.S., Bermejo, V., Reinert, R.A., Zheng, Y., Barnes, J.D.: Adverse effects of ambient ozone on watermelon yield and physiology at a rural site in Eastern Spain.-New Phytol. 144: 245-260, 1999.

    Google Scholar 

  • Guidi, L., Bongi, G., Ciompi, S., Soldatini, G.F.: In Vicia faba leaves photoinhibition from ozone fumigation in light prece-des a decrease in quantum yield of functional PSII centres.-J. Plant Physiol. 154: 167-172, 1999.

    Google Scholar 

  • Guidi, L., Nali, C., Ciompi, S., Lorenzini, G., Soldatini, G.F.: The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars.-J. exp. Bot. 48: 173-179, 1997.

    Google Scholar 

  • Guidi, L., Nali, C., Lorenzini, G., Filippi, F., Soldatini, G.F.: Effects of chronic ozone fumigation on the photosynthetic process of poplar clones showing different sensitivity.-Environ. Pollut. 113: 245-254, 2001.

    Google Scholar 

  • Heagle, A.S., Body, D.E., Heck, W.W.: An open-top chamber to asses the impact of air pollution on plants.-J. environ. Quality 2: 365-368, 1973.

    Google Scholar 

  • Heath, R.L.: Possible mechanisms for the inhibition of photo-synthesis by ozone.-Photosynth. Res. 39: 439-451, 1994.

    Google Scholar 

  • Heath, R.L., Parker, L.: Photoperoxidation in isolated chloro-plasts I. Kinetics and stoichiometry of fatty acid peroxidation.-Arch. Biochem. Biophys. 125: 189-198, 1968.

    Google Scholar 

  • Krause, G.H.: Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms.-Physiol. Plant. 74: 566-574, 1988.

    Google Scholar 

  • Lee, E.H., Jersey, J.A., Gifford, C., Bennett, J.H.: Differential ozone tolerance in soybean and snap beans: analysis of ascor-bic acid in O3-susceptible and O3-resistant cultivars by high performance lipid chromatography.-Environ. exp. Bot. 24: 331-341, 1984.

    Google Scholar 

  • Lorenzini, G., Nali, C., Panicucci, A.: Surface ozone in Pisa (Italy): a six-year study.-Atmos. Environ. 28: 3155-3164, 1994.

    Google Scholar 

  • Luwe, M.W.F., Takahama, U., Heber, U.: Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves.-Plant Physiol. 101: 969-976, 1993.

    Google Scholar 

  • Lyons, T., Plöchl, M., Turcsányi, E., Barnes, J.D.: Extracellular antioxidants: a protective screen against ozone?-In: Agrawal, M., Krizek, D.T. (ed.): Environmental Pollution and Plant Responses. Pp. 183-201. CRC Press/Lewis Publisher, Boca Raton 1999.

    Google Scholar 

  • Matyssek, R., Maurer, S., Gunthardt-Goerg, M., Landolt, W., Saurer, M., Polle, A.: Nutrition determines the “strategy” of Betula pendula for coping with ozone stress.-Phyton 37: 157-168, 1997.

    Google Scholar 

  • Meinander, O., Somersalo, S., Holopainen, T., Strasser, R.J.: Scots pines after exposure to elevated ozone and carbon di-oxide probed by reflectance spectra and chlorophyll a fluores-cence transients.-J. Plant Physiol. 148: 229-236, 1996.

    Google Scholar 

  • Menser, H.A.: Response of plant to air pollution. III. A relation between ascorbic acid levels and ozone susceptibility in light-preconditioned tobacco plants.-Plant Physiol. 39: 564-567, 1964.

    Google Scholar 

  • Miller, J.D., Arteca, R.N., Pell, E.J.: Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis.-Plant Physiol. 120: 1015-1023, 1999.

    Google Scholar 

  • Mudd, J.B.: Effects of oxidants on metabolic function.-In: Unsworth, M.H., Ormrod, D.P. (ed.): Effects of Gaseous Air Pollution in Agriculture and Horticulture. Pp. 189-203. Butterworth Scientific, London-Boston-Sydney-Wellington-Durban-Toronto 1982.

    Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts.-Plant Cell Physiol. 22: 867-880, 1981.

    Google Scholar 

  • Park, Y.-I., Chow, W.S., Anderson, J.M.: The quantum yield of photoinactivation of photosystem II in pea leaves is greater at low than at high photon exposure.-Plant Cell Physiol. 36: 1163-1167, 1995.

    Google Scholar 

  • Pasqualini, S., Batini, P., Ederli, L., Porceddu, A., Piccioni, C., Marchis, F., Antonielli, M.: Effects of short-term ozone fumi-gation on tobacco plants: response of the scavenging systems and expression of the glutathione reductase.-Plant Cell Environ. 24: 245-252, 2001.

    Google Scholar 

  • Pla ¿ ek, A., Rapacz, M., Skoczowski, A.: Effects of ozone fumigation on photosynthesis and membrane permeability in leaves of spring barley, meadow fescue, and winter rape.-Photosynthetica 38: 409-413, 2000.

    Google Scholar 

  • Polle, A.: Photochemical oxidants: Uptake and detoxidication mechanisms.-In: de Kok, L.J., Stulen, I. (ed.): Responses of Plant Metabolism to Air Pollution and Global Change. Pp. 95-116. Backhuys Publ., Leiden 1998.

    Google Scholar 

  • Polle, A., Rennenberg, H.: Photo-oxidative stress in trees.-In: Foyer, C., Mullineaux, P. (ed.): Causes of Photo-oxidative Stress and Amelioration by Defence Systems in Plants. Pp. 119-218. CRC Press, Boca Raton 1994.

    Google Scholar 

  • Prince, A., Lucas, P.W., Lea, P.J.: Age dependent damage and glutathione metabolism in ozone fumigated barley: a leaf section approach.-J. exp. Bot. 41: 1309-1317, 1990.

    Google Scholar 

  • Ranieri, A., Lencioni, L., Schenone, G., Soldatini, G.F.: Gluta-thione-ascorbic acid cycle in pumpkin plants grown under polluted air in open-top chambers.-J. Plant Physiol. 142: 286-290, 1993.

    Google Scholar 

  • Ranieri, A., D`Urso, G., Nali, C., Lorenzini, G., Soldatini, G.F.: Ozone stimulates apoplastic antioxidant systems in pumpkin leaves.-Physiol. Plant. 97: 381-387, 1996.

    Google Scholar 

  • Rao, M.V.: Cellular detoxifying mechanisms determine the age dependent injury in tropical trees exposed to SO2.-J. Plant Physiol. 140: 733-740, 1992.

    Google Scholar 

  • Rao, M.V., Gopinadhan, P., Ormrod, D.P.: Ultraviolet-B and ozone induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana.-Planta 110: 126-136, 1996.

    Google Scholar 

  • Schreiber, U., Schliwa, U., Bilger, W.: Continuous recording of photochemical and non-photochemical chlorophyll fluore-scence quenching with a new type of modulation fluorimeter.-Photosynth. Res. 10: 51-62, 1986.

    Google Scholar 

  • Seaton, G.G.R., Walker, D.A.: Chlorophyll fluorescence as a measure of photosynthetic carbon assimilation.-Proc. roy. Soc. London B 242: 29-35, 1990.

    Google Scholar 

  • Takahama, U., Oniki, T.: Regulation of peroxidase-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate.-Plant Cell Physiol. 33: 379-387, 1992.

    Google Scholar 

  • Tingey, D.T., Taylor, G.E., Jr.: Variation in plant responses to ozone: a conceptual model of physiological events.-In: Unsworth, M.H., Ormrod, D.P. (ed.): Effects of Gaseous Air Pollution in Agriculture and Horticulture. Pp. 113-138. Butterworth Scientific, London-Boston-Sydney-Wellington-Durban-Toronto 1982.

    Google Scholar 

  • Velissariou, D., Gimeno, B.S., Badiani, M., Fumagalli, I., Davison, A.W.: Records of O3 visible injury in the ECE Mediterranean region.-In: Kärelampi, L., Skärby, L. (ed.): Critical Levels for Ozone in Europe: Testing and Finalising the Concept. Pp. 343-350. UN-ECE Workshop Report, University of Kuopio, Kuopio 1996.

    Google Scholar 

  • Winston, G.W.: Physicochemical basis for free radical forma-tion in cells: production and defense.-In: Alscher, R.G., Cumming, J.R. (ed.): Stress Response in Plants: Adaptation and Acclimation Mechanisms. Pp. 58-86. Wiley-Liss, New York 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calatayud, A., Iglesias, D., Talón, M. et al. Response of Spinach Leaves (Spinacia oleracea L.) to Ozone Measured by Gas Exchange, Chlorophyll a Fluorescence, Antioxidant Systems, and Lipid Peroxidation. Photosynthetica 42, 23–29 (2004). https://doi.org/10.1023/B:PHOT.0000040565.53844.c6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHOT.0000040565.53844.c6

Navigation