Skip to main content
Log in

Enhancement of the Efficacy of An Antagonist of an Extracellular Receptor by Attachment to the Surface of a Biocompatible Carrier

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. In order to improve the in vitro and in vivo efficacy of an integrin antagonist (IA) of the extracellular domain of the αvβ3 integrin, a receptor upregulated on tumor neovasculature, the IA was attached to the surface of a dextran-coated liposome (DCL). IA-DCLs were characterized in vitro, and the pharmacokinetic and anti-tumor properties were assessed in vivo.

Methods. The in vitro binding properties were measured with purified integrin, endothelial cells, and melanoma cells. The pharmacokinetic parameters were measured in healthy mice with 14C-labeled IA-DCLs and anti-tumor efficacy was assessed with the M21 human melanoma xenograft mouse model.

Results. In vitro, IC50 values for IA-DCLs and IA are similar, and IA-DCLs inhibit cell proliferation relative to controls. IA-DCLs are stable in serum, and the pharmacokinetic half-life in mice is 23 h. In the M21/mouse model, statistically significant inhibition of tumor growth was observed for mice treated with IA-DCLs, whereas controls including saline, DCLs lacking IA, and cyclo(RGDfV) were ineffective. Increased apoptosis and a reduction in vessel counts relative to controls were present in tumors from animals treated with IA-DCLs.

Conclusions. These results demonstrate that IA-DCLs are potent anti-angiogenic therapeutic agents with superior in vivo activity and pharmacology compared to unmodified IA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. C. Gutheil, T. N. Campbell, P. R. Pierce, J. D. Watkins, W. D. Huse, D. J. Bodkin, and D. A. Cheresh. Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal anti-body to the integrin _v_3. Clin. Cancer Res. 6:3056–3061(2000).

    Google Scholar 

  2. C. L. Gladson. Expression of integrin _v_3 in small blood vessels of glioblastoma tumors. J. Neuropathol. Exp. Neuro. 55:1143–1149 (1996).

    Google Scholar 

  3. R. Max, R. R. Gerritsen, P. T. Nooijen, S. L. Goodman, A. Sutter, U. Keilholz, D. J. Ruiter, and R. M. De Waal. Immunohistochem-ical analysis of integrin _v_3 expression on tumor-associated ves-sels of human carcinomas. Int. J. Cancer 71:320–324 (1997).

    Google Scholar 

  4. L. Bello, J. Zhang, D. C. Nikas, J. F. Strasser, R. M. Villani, D. A. Cheresh, R. S. Carroll, and P. M. Black. _v_3 and _v_5 integrin expression in meningiomas. Neurosurgery 47:1185–1195 (2000).

    Google Scholar 

  5. J. D. Hood and D. A. Cheresh. Role of integrins in cell invasion and migration. Nat. Rev. Cancer 2:91–100 (2002).

    Google Scholar 

  6. J. S. Kerr, A. M. Slee, and S. A. Mousa. Small molecule alpha v integrin antagonists: novel anticancer agents. Expert Opin. Inves-tig. Drugs 9:1271–1279(2000).

    Google Scholar 

  7. J. S. Kerr, A. M. Slee, and S. A. Mousa. The alpha v integrin antagonists as novel anticancer agents: an update. Expert Opin. Investig. Drugs 11:1765–1774 (2002).

    Google Scholar 

  8. N. Oku, Y. Tokudome, C. Koike, N. Nishikawa, H. Mori, I. Saiki, and S. Okada. Liposomal Arg-Gly-Asp analogs effectively inhibit metastatic B16 melanoma colonization in murine lungs. Life Sci. 58:2263–2270 (1996).

    Google Scholar 

  9. K. Kurohane, Y. Namba, and N. Oku. Liposomes modified with a synthetic Arg-Gly-Asp mimetic inhibit lung metastasis of B16BL6 melanoma cells. Life Sci. 68:273–281 (2000).

    Google Scholar 

  10. R. Schiffelers, G. Molema, T. L. ten Hagen, A. P. Janssen, A. J. Schraa, R. J. Kok, G. A. Koning, and G. Storm. Ligand-targeted liposomes directed against pathological vasculature. J. Liposome Res. 12:129–135 (2002).

    Google Scholar 

  11. T. M. Allen. Liposomal drug formulations. Rationale for devel-opment and what we can expect for the future. Drugs 56:747–756 (1998).

    Google Scholar 

  12. R. Mehvar. Dextrans for targeted and sustained delivery of thera-peutic and imaging agents. J. Control. Rel. 69:1–25 (2000).

    Google Scholar 

  13. J. D. Hood, M. Bednarski, R. Frausto, S. Guccione, R. A. Reis-feld, R. Xiang, and D. A. Cheresh. Tumor regression by targeted gene delivery to the neovasculature. Science 296:2404–2407 (2002).

    Google Scholar 

  14. P. Hubert, J. Mester, E. Dellacherie, J. Neel, and E. E. Baulieu. Soluble biospecific macromolecule for purification of estrogen receptor. Proc. Natl. Acad. Sci. USA 75:3143–3147 (1978).

    Google Scholar 

  15. A. F. Habeeb. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal. Biochem. 14:328–336(1966).

    Google Scholar 

  16. T. A. Scott and E. H. Melvin. Determination of dextran with anthrone. Anal. Chem. 25:1656–1661 (1953).

    Google Scholar 

  17. G. A. Sulyok, C. Gibson, S. L. Goodman, G. Holzemann, M. Wiesner, and H. Kessler. Solid-phase synthesis of a nonpeptide RGD mimetic library: new selective _v_3 integrin antagonists. J. Med. Chem. 44:1938–1950 (2001).

    Google Scholar 

  18. J. M. Wu, M. P. Rosser, A. R. Howlett, and R. I. Feldman. In A. Howlett (ed.), Integrin Protocols, Humana Press, Totowa, NJ, 1999 pp. 211–217.

    Google Scholar 

  19. R. D. Petty, L. A. Sutherland, E. M. Hunter, and I. A. Cree. Comparison of MTT and ATP-based assays for the measurement of viable cell number. J. Biolumin. Chemilumin. 10:29–34 (1995).

    Google Scholar 

  20. I. M. Hann and H. G. Prentice. Lipid-based amphotericin B: a review of the last 10 years of use. Int. J. Antimicrob. Agents 17:161–169 (2001).

    Google Scholar 

  21. H. M. Patel, N. S. Tuzel, and B. E. Ryman. Inhibitory effect of cholesterol on the uptake of liposomes by liver and spleen. Bio-chim. Biophys. Acta 761:142–151 (1983).

    Google Scholar 

  22. D. L. Iden and T. M. Allen. In vitro and in vivo comparison of immunoliposomes made by conventional coupling techniques with those made by a new post-insertion approach. Biochim. Bio-phys. Acta 1513:207–216 (2001).

    Google Scholar 

  23. B. S. Coller, K. Anderson, and H. F. Weisman. New antiplatelet agents: platelet GPIIb/IIIa antagonists. Thromb. Haemost. 74: 302–308 (1995).

    Google Scholar 

  24. T. M. Allen and C. Hansen. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim. Biophys. Acta 1068:133–141 (1991).

    Google Scholar 

  25. S. Chatterjee, A. Matsumura, J. Schradermeier, and G. Y. Gillespie. Human malignant glioma therapy using anti-_v_3 in-tegrin agents. J. Neurooncol. 46:135–144 (2000).

    Google Scholar 

  26. J. Haier, U. Goldmann, B. Hotz, N. Runkel, and U. Keilholz. Inhibition of tumor progression and neoangiogenesis using cyclic RGD-peptides in a chemically induced colon carcinoma in rats. Clin. Exp. Metastasis 19:665–672 (2002).

    Google Scholar 

  27. R. Allman, P. Cowburn, and M. Mason. In vitro and in vivo effects of a cyclic peptide with affinity for the alpha v beta 3 integrin in human melanoma cells. Eur. J. Cancer 36:410–422 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wartchow, C.A., Alters, S.E., Garzone, P.D. et al. Enhancement of the Efficacy of An Antagonist of an Extracellular Receptor by Attachment to the Surface of a Biocompatible Carrier. Pharm Res 21, 1880–1885 (2004). https://doi.org/10.1023/B:PHAM.0000045243.98010.b6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000045243.98010.b6

Navigation