Skip to main content
Log in

On-Line Visualization of Dye Diffusion in Fresh Unfixed Human Skin

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of the current study was to develop a new method to examine the diffusion in fresh unfixed human skin on-line.

Methods. Full thickness skin samples were cut perpendicular to the skin surface (cutting plane facing upwards) with a new cutting device forming part of the final diffusion cell. The donor solution contained 0.1 mg/ml Bodipy FL C5 (moderately lipophilic) dissolved in citric acid buffer, pH 5.0, and the acceptor phase consisted of phosphate-buffered saline, pH 7.4. Images were taken with confocal laser scanning microscopy (CLSM) every 10 min for 8 h.

Results. This new method enabled for the first time visualization of concentration profiles in different skin layers simultaneously as a function of time. For this model penetrant, Bodipy FL C5 showed that the lower stratum corneum layer constitutes the greatest barrier to diffusion. Furthermore, there is preferred partitioning of this probe in epidermis vs. either stratum corneum or dermis.

Conclusions. The on-line diffusion cell in combination with CLSM is a promising tool to study diffusion processes of dyes in fresh unfixed skin on-line. The method has the potential to access deeper skin layers as well as to visualize diffusion processes in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. P. Corcuff and G. E. Pierard. Skin imaging: State of the art at the dawn of the year 2000. Skin Bioeng. 26:1–11 (1998).

    Google Scholar 

  2. E. Touitou, V. M. Meidan, and E. Horwitz. Methods for quantitative determination of drug localized in the skin. J. Control. Rel. 56:7–21 (1998).

    Google Scholar 

  3. F. Lund and T. Jogestrand. Video fluorescein imaging of the skin: description of an overviewing technique for functional evaluation of regional cutaneous blood perfusion in occlusive arterial disease of the limbs. Clin. Physiol. 17:619–633 (1997).

    Google Scholar 

  4. R. H. Bull, D. O. Bates, and P. S. Mortimer. Intravital video-capillaroscopy for the study of the microcirculation in psoriasis. Br. J. Dermatol. 126:436–445 (1992).

    Google Scholar 

  5. J. L. Morris. Cotransmission from sympathetic vasoconstrictor neurons to small cutaneous arteries in vivo. Am. J. Physiol. Heart Circ. Physiol. 46:H58-H64 (1999).

    Google Scholar 

  6. T. Salmon, R. A. Walker, and N. K. Pryer. Advances in microscopy-part III; video-enhanced differential interference contrast light microscopy. Biotechniques 7:624–633 (1989).

    Google Scholar 

  7. A. W. B. Stanton, H. S. Patel, J. R. Levick, and P. S. Mortimer. Increased dermal lymphatic density in the human leg compared with the forearm. Microvasc. Res. 57:320–328 (1999).

    Google Scholar 

  8. S. Richard, B. Querleux, J. Bittoun, I. Idy-Peretti, O. Jolivet, E. Cermakova, and J. L. Leveque. In vivo proton relaxation times analysis of the skin layers by magnetic resonance imaging. J. Invest. Dermatol. 97:120–125 (1991).

    Google Scholar 

  9. H. K. Song, F. W. Wehrli, and J. F. Ma. In vivo MR microscopy of the human skin. Magn. Reson. Med. 37:185–191 (1997).

    Google Scholar 

  10. M. Szayna and W. Kuhn. In vivo and in vitro investigations of hydration effects of beauty care products by high-field MRI and NMR microscopy. Eur. Acad. Dermatol. Venereol. 11:122–128 (1998).

    Google Scholar 

  11. T. Herrling, J. Fuchs, and N. Groth. Kinetic measurements using EPR imaging with a modulated field gradient. J. Magn. Reson. 154:6–14 (2002).

    Google Scholar 

  12. D. H. Turnbull, B. G. Starkoski, K. A. Harasiewicz, J. L. Semple, L. From, A. K. Gupta, D. N. Sauder, and F. S. Foster. 40–100 MHz B-SCAN ultrasound backscatter microscope for skin imaging. Ultrasound Med. Biol. 21:79–88 (1995).

    Google Scholar 

  13. P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, and G. J. Puppels. In vitro and in vivo Raman spectroscopy of human skin. Biospectroscopy 4:S31-S39 (1998).

    Google Scholar 

  14. P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, and G. J. Puppels. In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles. J. Invest. Dermatol. 116:434–442 (2001).

    Google Scholar 

  15. D. Aghassi, R. R. Anderson, and S. Gonzalez. Time-sequence histologic imaging of laser-treated cherry angiomas with in vivo confocal microscopy. J. Am. Acad. Dermatol. 43:37–41 (2000).

    Google Scholar 

  16. C. Bertrand and P. Corcuff. In vivo spatio-temporal visualization of the human skin by real-time confocal microscopy. Scanning 16:150–154 (1994).

    Google Scholar 

  17. P. Corcuff, C. Bertrand, and J. L. Leveque. Morphometry of human epidermis in vivo by real-time confocal microscopy. Arch. Dermatol. Res. 285:475–481 (1993).

    Google Scholar 

  18. C. Cullander. Light microscopy of living tissue: the state and future of the art. J. Invest. Dermatol. Symp. Proc. 3:166–171 (1998).

    Google Scholar 

  19. B. S. Grewal, A. Naik, W. J. Irwin, G. Gooris, G. J. de-Grauw, H. G. Gerritsen, and J. A. Bouwstra. Transdermal macromolecular delivery: Real-time visualization of iontophoretic and chemically enhanced transport using two-photon excitation microscopy. Pharm. Res. 17:788–795 (2000).

    Google Scholar 

  20. A. J. Hoogstraate, C. Cullander, J. F. Nagelkerke, F. Spies, J. Verhoef, A. H. G. J. Schrijvers, H. E. Junginger, and H. E. Bodde. A novel in-situ model for continuous observation of transient drug concentration gradients across buccal epithelium at the microscopical level. J. Control. Rel. 39:71–78 (1996).

    Google Scholar 

  21. M. Rajadhyaksha, S. Gonzalez, J. M. Zavislan, R. R. Anderson, and R. H. Webb. In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. J. Invest. Dermatol. 113:293–303 (1999).

    Google Scholar 

  22. M. E. M. J. Meuwissen, J. Janssen, C. Cullander, H. E. Junginger, and J. A. Bouwstra. A cross-section device to improve visualization of fluorescent probe penetration into the skin by confocal laser scanning microscopy. Pharm. Res. 15:352–356 (1998).

    Google Scholar 

  23. Y. Y. Grams and J. A. Bouwstra. A new method to determine the distribution of a fluorophore in scalp skin with focus on hair follicles. Pharm. Res. 19:350–354 (2002).

    Google Scholar 

  24. J. Karolin, L. B. A. Johansson, L. Strandberg, and T. Ny. Fluorescence and absorption spectroscopic properties of Dipyrrometheneboron difluoride (BODIPY) derivatives in liquids, lipid membranes, and proteins. J. Am. Chem. Soc. 116:7801–7806 (1994).

    Google Scholar 

  25. H. Okamoto, F. Yamashita, K. Saito, and M. Hashida. Analysis of drug penetration through the skin by the two-layer skin model. Pharm. Res. 6:931–937 (1989).

    Google Scholar 

  26. R. J. Scheuplein and L. W. Ross. Mechanism of percutaneous absorption. V. J. Invest. Dermatol. 62:353–360 (1974).

    Google Scholar 

  27. F. Yamashita, H. Bando, Y. Koyama, S. Kitagawa, Y. Takakura, and M. Hashida. In vivo and in vitro analysis of skin penetration enhancement based on a two-layer diffusion model with polar and nonpolar routes in the stratum corneum. Pharm. Res. 11:185–191 (1994).

    Google Scholar 

  28. H. Schaefer and T. E. Redelmeier. Skin Barrier: Principles of Percutaneous Absorption, Karger, Basel, 1996.

    Google Scholar 

  29. B. Yu, C. Y. Dong, P. T. So, D. Blankschtein, and R. Langer. In vitro visualization and quantification of oleic acid induced changes in transdermal transport using two-photon fluorescence microscopy. J. Invest. Dermatol. 117:16–25 (2001).

    Google Scholar 

  30. Y. Y. Grams and J. A. Bouwstra. Penetration and distribution of three lipophilic probes in vitro in human skin focusing on the hair follicle. J. Control. Rel. 83:253–262 (2002).

    Google Scholar 

  31. Y. Y. Grams, S. Alaruikka, L. Lashley, J. Caussin, L. Whitehead, and J. A. Bouwstra. Permeant lipophilicity and vehicle composition influence accumulation of dyes in hair follicles of human skin. Eur. J. Pharm. Sci. 18:329–336 (2003).

    Google Scholar 

  32. Y. H. Kim, A. H. Ghanem, and W. I. Higuchi. Model studies of epidermal permeability. Semin. Dermatol. 11:145–156 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joke A. Bouwstra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grams, Y.Y., Whitehead, L., Cornwell, P. et al. On-Line Visualization of Dye Diffusion in Fresh Unfixed Human Skin. Pharm Res 21, 851–859 (2004). https://doi.org/10.1023/B:PHAM.0000026439.63969.30

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000026439.63969.30

Navigation