Skip to main content
Log in

Urinary Excretion: Does It Accurately Reflect Relative Differences in Bioavailability/Systemic Exposure When Renal Clearance Is Nonlinear?

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of this study was to assess the influence of nonlinear renal clearance on the ability of urinary excretion data to accurately determine relative differences in systemic exposure and bioavailability.

Methods. Serum concentration and urinary excretion-time profiles were simulated assuming an open one-compartmental model with first-order absorption, linear nonrenal clearance, and either linear or nonlinear renal clearance (saturable secretion). Renal clearance comprised 5% or 95% of total clearance. Doses were varied over a 100-fold range (10-fold decrease/increase from the reference dose). Relative systemic exposures were based on the ratios of AUC and Cmax and the corresponding ratios of cumulative amount excreted in urine (Ae) and the maximum urinary excretion rate. Relative bioavailability was based on the ratios of Ae and the test to reference dose (Dratio).

Results. When renal clearance was linear and urinary excretion data were used to assess relative systemic exposure and relative bioavailability, no significant errors in accuracy were observed. However, when renal clearance was nonlinear, errors in the accuracy of estimation of relative bioavailability (Clr =5% only) and relative systemic exposure ranged from -53% to +125%; minimal error in accuracy existed in the estimation of relative bioavailability when Clr = 95% (−3% to +6%).

Conclusions. Prior to the use of urinary excretion data to assess relative systemic exposure or bioavailability, the relationship between serum concentration and renal clearance should be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. Food and Drug Administration. Bioavailability and bioequivalence requirements. Fed. Regist. 42:1624–1653 (1977).

    Google Scholar 

  2. W. J. Westlake. Use of statistical methods in evaluation of in vivo performance of dosage forms. J. Pharm. Sci. 62:1579–1589 (1973).

    Google Scholar 

  3. W. J. Westlake. Use of confidence intervals in analysis of comparative bioavailability trials. J. Pharm. Sci. 61:1340–1341 (1972).

    Google Scholar 

  4. E. Purich. Bioavailability/Bioequivalence Regulations: An FDA Perspective. In K. S. Albert (ed.), Drug Absorption and Disposition: Statistical Considerations, American Pharmaceutical Association Academy of Pharmaceutical Sciences, Washington, DC, 1980, pp. 115–137.

    Google Scholar 

  5. T. W. Dobbins and B. Thiyagarajan. A retrospective assessment of the 75/75 rule in bioequivalence. Stat. Med. 11:1333–1342 (1992).

    Google Scholar 

  6. D. J. Schuirmann. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J. Pharmacokinet. Biopharm. 15:657–680 (1987).

    Google Scholar 

  7. K. K. Midha, E. D. Ormsby, J. W. Hubbard, G. McKay, E. M. Hawes, L. Gavalas, and I. J. McGilveray. Logarithmic transformation in bioequivalence—application with 2 formulations of perphenazine. J. Pharm. Sci. 82:138–144 (1993).

    Google Scholar 

  8. W. W. Hauck and S. Anderson. Types of bioequivalence and related statistical considerations. Int. J. Clin. Pharm. Ther. Toxicol. 30:181–187 (1992).

    Google Scholar 

  9. L. B. Sheiner. Bioequivalence revisited. Stat. Med. 11:1777–1788 (1992).

    Google Scholar 

  10. J. G. Zhi. Initial slope technique to estimate first-and zero-order drug absorption rate constants. J. Pharm. Sci. 77:816–817 (1988).

    Google Scholar 

  11. H. Cheng, A. E. Staubus, and L. Shum. An area function method for estimating the apparent absorption rate constant. Pharm. Res. 5:57–60 (1988).

    Google Scholar 

  12. R. P. Basson, B. J. Cerimele, K. A. Desante, and D. C. Howey. Tmax: an unconfounded metric for rate of absorption in single dose bioequivalence studies. Pharm. Res. 13:324–328 (1996).

    Google Scholar 

  13. L. Endrenyi, S. Fritsch, and W. Yan. Cmax/AUC is a clearer measure than Cmax for absorption rates in investigations of bioequivalence. Int. J. Clin. Pharm. Ther. Toxicol. 29:394–399 (1991).

    Google Scholar 

  14. A. Rostamihodjegan, P. R. Jackson, and G. T. Tucker. Sensitivity of indirect metrics for assessing “rate” in bioequivalence studies-moving the “goalposts” or changing the “game”. J. Pharm. Sci. 83:1554–1557 (1994).

    Google Scholar 

  15. M. L. Chen, V. Shah, R. Patnaik, W. Adams, A. Hussain, D. Conner, M. Mehta, H. Malinowski, J. Lazor, S. M. Huang, D. Hare, L. Lesko, D. Sporn, and R. Williams. Bioavailability and bioequivalence: An FDA regulatory overview. Pharm. Res. 18:1645–1650 (2001).

    Google Scholar 

  16. Food and Drug Administration. Bioavailability and bioequivalence studies for orally administered drug product: general considerations. Available at: www.fda.gov/cder/guidance/index.htm (2003)

  17. Food and Drug Administration. Exposure-response relationships—study design, data analysis, and regulatory applications. Available at: www.fda.gov/cder/guidance/index.htm (2003)

  18. M. Gibaldi and D. Perrier. Pharmacokinetics, Marcel Dekker, Inc., New York, 1982.

    Google Scholar 

  19. P. L. Bonate, K. Reith, and S. Weir. Drug interactions at the renal level: Implications for drug development. Clin. Pharmacokinet. 34:375–404 (1998).

    Google Scholar 

  20. J. V. S. Gobburu and P. J. Marroum. Utilisation of pharmacokinetic-pharmacodynamic modelling and simulation in regulatory decision-making. Clin. Pharmacokinet. 40:883–892 (2001).

    Google Scholar 

  21. B. J. Gertz, S. H. Holland, W. F. Kline, B. K. Matuszewski, A. Freeman, H. Quan, K. C. Lasseter, J. C. Mucklow, and A. G. Porras. Studies of the oral bioavailability of alendronate. Clin. Pharmacol. Ther. 58:288–298 (1995).

    Google Scholar 

  22. A. G. Porras, S. D. Holland, and B. J. Gertz. Pharmacokinetics of alendronate. Clin. Pharmacokinet. 36:315–328 (1999).

    Google Scholar 

  23. D. Y. Mitchell, M. A. Heise, K. A. Pallone, M. E. Clay, J. D. Nesbitt, D. A. Russell, and C. W. Melson. The effect of dosing regimen on the pharmacokinetics of risedronate. Brit. J. Clin. Pharmacol. 48:536–542 (1999).

    Google Scholar 

  24. D. Y. Mitchell, R. A. Eusebio, N. A. Sacco-Gibson, K. A. Pallone, S. C. Kelly, J. D. Nesbitt, C. P. Brezovic, G. A. Thompson, and J. H. Powell. Dose-proportional pharmacokinetics of risedronate on single-dose oral administration to healthy volunteers. J. Clin. Pharmacol. 40:258–265 (2000).

    Google Scholar 

  25. G. A. Thompson, J. H. Powell, and S. Mallikaarjun. Bisphosphonate renal clearance: Assessment of linearity. Pharm. Res. 14:S-510(1997).

    Google Scholar 

  26. K. Besseghir and F. Roch-Ramel. Renal excretion of drugs and other xenobiotics. Renal Physiol. 10:221–241 (1987).

    Google Scholar 

  27. W. Weber, M. Nitz, and M. Looby. Nonlinear kinetics of the thiamine cation in humans: Saturation of nonrenal clearance and tubular reabsorption. J. Pharmacokinet. Biopharm. 18:501–523 (1990).

    Google Scholar 

  28. W. Weber, S. Toussaint, M. Looby, M. Nitz, and H. Kewitz. System analysis in multiple dose kinetics: Evidence for saturable tubular reabsorption of the organic cation N1-methylnicotinamide in humans. J. Pharmacokinet. Biopharm. 19:553–574 (1990).

    Google Scholar 

  29. C. A. M. Van Ginneken and F. G. M. Russel. Saturable pharmacokinetics in the renal excretion of drugs. Clin. Pharmacokinet. 16:38–54 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, G.A., Toothaker, R.D. Urinary Excretion: Does It Accurately Reflect Relative Differences in Bioavailability/Systemic Exposure When Renal Clearance Is Nonlinear?. Pharm Res 21, 781–784 (2004). https://doi.org/10.1023/B:PHAM.0000026428.48103.4f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000026428.48103.4f

Navigation