Skip to main content

Advertisement

Log in

In Vivo Phage Display to Identify M Cell-Targeting Ligands

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of this study was to use in vivo phage display screening technology to identify novel lead peptides that target delivery to M cells and to follicle-associated epithelium (FAE) of the intestine.

Methods. Phage display libraries were screened in vivo within the gastrointestinal tract of a rat model by successive screenings across four cycles of selection.

Results. Following four cycles of in vivo screening, we identified 30 unique peptide sequences that bound to Peyer's patch tissue, human Caco-2, and rat IEC-6 epithelial cells. Two of the lead targeting peptides, peptides P8 (LETTCASLCYPS) and P25 (VPPHPMTYSCQY), were shown to bind to receptors on the surface of human intestinal tissue. The l-form, d-form, retro-inverted d-form, and selective Cys-to-Ala site-directed mutants of peptides P8 and P25 were also shown to retain binding to Caco-2 cell membranes when immobilized on the surface of a model particulate. Finally, the d-peptide analog of peptide P8 (yqcsytmphppv) enhanced the delivery of polystyrene particles to M cells in vivo in a mouse model, and these particles were delivered into Peyer's patch tissue, as determined by confocal microscopy.

Conclusions. In summary, we have identified novel ligands that target M cells and Peyer's patch tissue, and thus may have utility in the targeted oral delivery of vaccines and vaccine carrier systems to the mucosal immune system within the gastrointestinal tract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Frey and M. R. Neutra. Targeting of mucosal vaccines to Peyer's patch M cells. Behring Inst. Mitt. 98:376-389 (1997).

    Google Scholar 

  2. M. A. Clark, M. A. Jepson, and B. H. Hirst. Exploiting M cells for drug and vaccine delivery. Adv. Drug Deliv. Rev. 50:81-106 (2001).

    Google Scholar 

  3. D. J. Brayden and D. J. O'Mahony. Novel oral drug delivery gateways for biotechnology products: polypeptides and vaccines. Pharm. Sci. Tech. Today 1:291-299 (1998).

    Google Scholar 

  4. H. Chen and R. Langer. Oral particulate delivery: status and future trends. Adv. Drug Delivery Rev. 34:339-350 (1998).

    Google Scholar 

  5. F. Niedergang and J. P. Kraehenbuhl. Much ado about M cells. Trends Cell Biol. 10:137-141 (2002).

    Google Scholar 

  6. J. P. Kraehenbuhl and M. R. Neutra. Epithelial M cells: differentiation and function. Ann. Rev. Dev. Biol. 16:301-332 (2000).

    Google Scholar 

  7. D. Lo, B. Hilbush, D. O'Mahony, and J. G. Sutcliffe. Open system gene expression profiling and identification of novel genes for targeted vaccine delivery. Expert Review of Vaccines 1:95-100 (2002).

    Google Scholar 

  8. D. Lo, W. Tynan, J. Dickerson, J. Mendy, H-W. Chang, M. Scharf, D. Byrne, D. Brayden, L. Higgins, C. Evans, and D. J. O'Mahony. Peptidoglycan reconition protein expression in mouse Peyer's patch follicle associated epithelium suggests functional specialization. Cellular Immunology 224(1):8-16 (2003).

    Google Scholar 

  9. I. Lambkin and C. Pinilla. C. Hamashin C, L. Spindler, S. Russell, A. Schink, R. Moya-Castro, G. Allicotti, L. Higgins, M. Smith, J. Dee, C. Wilson, R. Houghten, D. O'Mahony. Toward targeted oral vaccine delivery systems: selection of lectin mimetics from combinatorial libraries. Pharm. Res. 20:1258-1266 (2003).

    Google Scholar 

  10. W. Arap, R. Pasqualini, and E. Ruoslahti. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377-380 (1998).

    Google Scholar 

  11. E. Ruoslahti. Targeting tumor vasculature with homing peptides from phage display. Semin. Cancer Biol. 10:435-442 (2000).

    Google Scholar 

  12. W. Arap, M. G. Kolonin, M. Trepel, J. Lahdenranta, M. Cardo-Vila, R. J. Giordano, P. J. Mintz, P. U. Ardelt, V. J. Yao, C. I. Vidal, et al. Steps toward mapping the human vasculature by phage display. Nat. Med. 8:121-127 (2002).

    Google Scholar 

  13. N. Foster, M. A. Clark, M. A. Jepson, and B. H. Hirst. Ulex europaeus 1 lectin targets microspheres to mouse Peyer's patch M-cells in vivo. Vaccine 16:536-541 (1998).

    Google Scholar 

  14. E. Koivunen, B. Wang, and E. Ruoslahti. Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology 13:265-270 (1995).

    Google Scholar 

  15. P. Artursson. Epithelial transport of drugs in cell culture. I. A model for studying the passive diffusion of drugs over intestinal absorbtive (Caco-2) cells. J. Pharm. Sci. 79:476-482 (1990).

    Google Scholar 

  16. B. T. Kinsella, D. J. O'Mahony, and G. A. Fitzgerald. The human thromboxane A2 receptor alpha isoform (TP alpha) functionally couples to the G proteins Gq and G11 in vivo and is activated by the isoprostane 8-epi prostaglandin F2 alpha. J. Pharmacol. Exp. Ther. 281:957-964 (1997).

    Google Scholar 

  17. B. A. Jameson, J. M. McDonnell, J. C. Marini, and A. Korngold. A rationally designed CD4 analog inhibits experimental allergic encephalomyelitis. Nature 368:744-746 (1994).

    Google Scholar 

  18. L. Brady and G. Dodson. Drug design. Reflections on a peptide. Nature 368:692-693 (1994).

    Google Scholar 

  19. N. Foster, M. A. Clark, M. A. Jepson, and B. H. Hirst. Ulex europaeus 1 lectin targets microspheres to mouse Peyer's patch M-cells in vivo. Vaccine 16:536-541 (1998).

    Google Scholar 

  20. M. A. Clark, H. Blair, L. Liang, R. N. Brey, D. Brayden, and B. H. Hirst. Targeting polymerised liposome vaccine carriers to intestinal M cells. Vaccine 20:208-217 (2001).

    Google Scholar 

  21. N. J. Mantis, A. Frey, and M. R. Neutra. Accessibility of glycolipid and oligosaccharide epitopes on rabbit villus and follicle-associated epithelium. Am. J. Physiol. Gastrointest. Liver Physiol. 278:G915-G923 (2000).

    Google Scholar 

  22. P. J. Giannasca, K. T. Giannasca, A. M. Leichtner, and M. R. Neutra. Human intestinal M cells display the sialyl Lewis A antigen. Infection Immunity 67:946-953 (1999).

    Google Scholar 

  23. Y. Wu, X. Wang, K. L. Csencsits, A. Haddad, N. Walters, and D. W. Pascual. M cell-targeted DNA vaccination. Proc. Natl. Acad. Sci. U. S. A. 98:9318-9323 (2001).

    Google Scholar 

  24. N. J. Mantis, M. C. Cheung, K. R. Chintalacharuvu, J. Rey, B. Corthesy, and M. R. Neutra. Selective adherence of IgA to murine Peyer's patch M cells: evidence for a novel IgA receptor. J. Immunol. 169:1844-1851 (2002).

    Google Scholar 

  25. H. Chen and R. L. Langer. Polymerized liposomes targeted to M cells and useful for oral and mucosal drug delivery. USP 6,060,082, (2000).

  26. M. Conacher, J. Alexander, and J. M. Brewer. Oral immunisation with peptide and protein antigens by formulation in lipid vesicles incorporating bile salts (bilosomes). Vaccine 19:2965-2974 (2001).

    Google Scholar 

  27. K. Senior. Bilosomes: the answer to oral vaccine delivery? Drug Discovery Today 6:1031-1032 (2001).

    Google Scholar 

  28. R. Gluck. Adjuvant activity of immunopotentiating reconstituted influenza virosomes (IRIVs). Vaccine 17:1782-1787 (1999).

    Google Scholar 

  29. M. G. Cusi, R. Zurbriggen, P. Correale, M. Valassina, C. Terrosi, L. Pergola, P. E. Valensin, and R. Gluck. Influenza virosomes are an efficient delivery system for respiratory syncytial virus-F antigen inducing humoral and cell-mediated immunity. Vaccine 20:3436-3442 (2002).

    Google Scholar 

  30. R. K. Gupta, A. C. Chang, and G. R. Siber. Biodegradable polymer microspheres as vaccine adjuvants and delivery systems. Dev. Biol. Stand. 92:63-78 (1998).

    Google Scholar 

  31. D. J. Brayden and A. W. Baird. Microparticle vaccine approaches to stimulate mucosal immunization. Microbes Infect. 3:867-876 (2001).

    Google Scholar 

  32. D. J. Brayden, L. Templeton, S. McClean, R. Barbour, J. Huang, M. Nguyen, D. Ahern, R. Motter, K. Johnson-Wood, N. Vasquez, D. Schenk, and P. Seubert. Encapsulation in biodegradable microparticles enhances serum antibody response to parenterally-delivered beta-amyloid in mice. Vaccine 19:4185-4193 (2001).

    Google Scholar 

  33. M. A. Conway, L. Madrigal-Estebas, S. McClean, D. J. Brayden, and K. H. Mills. Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 19:1940-1950 (2001).

    Google Scholar 

  34. H. Iijima, I. Takahashi, and H. Kiyono. Mucosal immune network in the gut for the control of infectious diseases. Rev. Med. Virol. 11:117-133 (2001).

    Google Scholar 

  35. M. T. Shata, L. Stevceva, S. Agwale, G. K. Lewis, and D. M. Hone. Recent advances with recombinant bacterial vaccine vectors. Mol. Med. Today 6:66-71 (2000).

    Google Scholar 

  36. C. D. Morrow, M. J. Novak, D. C. Ansardi, D. C. Porter, and Z. Moldoveanu. Recombinant viruses as vectors for mucosal immunity. Curr. Top. Microbiol. Immunol. 236:255-273 (1999).

    Google Scholar 

  37. E. T. Ryan, T. I. Crean, S. K. Kochi, M. John, A. A. Luciano, K. P. Killeen, K. E. Klose, and S. B. Calderwood. Development of a DeltaglnA balanced lethal plasmid system for expression of heterologous antigens by attenuated vaccine vector strains of Vibrio cholerae. Infect. Immun. 68:221-226 (2000).

    Google Scholar 

  38. C. O. Tacket, J. Galen, M. B. Sztein, G. Losonsky, T. L. Wyant, J. Nataro, S. S. Wasserman, R. Edelman, S. Chatfield, G. Dougan, and M. M. Levine. Safety and immune responses to attenuated Salmonella enterica serovar typhi oral live vector vaccines expressing tetanus toxin fragment Clin. Immunol. 97:146-153 (2000).

    Google Scholar 

  39. L. Scheppler, M. Vogel, A. W. Zuercher, M. Zuercher, J. E. Germond, S. M. Miescher, and B. M. Stadler. Recombinant Lactobacillus johnsonii as a mucosal vaccine delivery vehicle. Vaccine 20:2913-2920 (2002).

    Google Scholar 

  40. D. Medaglini, A. Ciabattini, M. R. Spinosa, T. Maggi, H. Marcotte, M. R. Oggioni, and G. Pozzi. Immunization with recombinant Streptococcus gordonii expressing tetanus toxin fragment C confers protection from lethal challenge in mice. Vaccine 19:1931-1939 (2001).

    Google Scholar 

  41. L. A. Babiuk and S. K. Tikoo. Adenoviruses as vectors for delivering vaccines to mucosal surfaces. J. Biotechnol. 83:105-113 (2000).

    Google Scholar 

  42. R. Andino, D. Silvera, S. D. Suggett, P. L. Achacoso, C. J. Miller, D. Baltimore, and M. B. Feinberg. Engineering poliovirus as a vaccine vector for the expression of diverse antigens. Science 265:1448-1451 (1994).

    Google Scholar 

  43. E. Paoletti. Applications of pox virus vectors to vaccination: an update. Proc. Natl. Acad. Sci. U. S. A. 93:11349-11353 (1996).

    Google Scholar 

  44. B. Dietzschold and M. J. Schnell. New approaches to the development of live attenuated rabies vaccines. Hybrid Hybridomics 21:129-134 (2002).

    Google Scholar 

  45. O. O. Minenkova, A. A. Ilyichev, G. P. Kishchenko, and V. A. Petrenko. Design of specific immunogens using filamentous phage as the carrier. Gene 128:85-88 (1993).

    Google Scholar 

  46. A. C. Stubbs and C. C. Wilson. Recombinant yeast as a vaccine vector for the induction of cytotoxic T-lymphocyte responses. Curr. Opin. Mol. Ther. 4:35-40 (2002).

    Google Scholar 

  47. D. Bumann. Regulated antigen expression in live recombinant Salmonella enterica serovar Typhimurium strongly affects colonization capabilities and specific CD4(+)-T-cell responses. Infect. Immun. 69:7493-7500 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. O'Mahony.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higgins, L.M., Lambkin, I., Donnelly, G. et al. In Vivo Phage Display to Identify M Cell-Targeting Ligands. Pharm Res 21, 695–705 (2004). https://doi.org/10.1023/B:PHAM.0000022418.80506.9a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000022418.80506.9a

Navigation