Advertisement

Pharmaceutical Research

, Volume 21, Issue 3, pp 524–535 | Cite as

Preparation of Large Porous Deslorelin-PLGA Microparticles with Reduced Residual Solvent and Cellular Uptake Using a Supercritical Carbon Dioxide Process

  • Kavitha Koushik
  • Uday B. KompellaEmail author
Article

Abstract

Purpose. The purpose of this study was to prepare large-porous peptide-encapsulating polymeric particles with low residual solvent that retain deslorelin integrity, sustain drug release, and exhibit reduced epithelial and macrophage uptake. We hypothesized that supercritical carbon dioxide (SC CO2) pressure-quench treatment of microparticles prepared using conventional approach expands these particles and extracts the residual organic solvent.

Methods. Initial studies with crystalline L-lactide (L-PLA) and amorphous copolymers of lactide-co-glycolide (PLGA) 50:50, 65:35, and 75:25 indicated that PLGA 50:50 was the most amenable to morphological changes upon SC CO2 treatment. Therefore, we prepared deslorelin-PLGA (50:50) microparticles using the conventional emulsion-solvent evaporation method, and in a second step equilibrated with SC CO2 at various temperatures (33-37°C) and pressures (1200-2000 psi) for discrete intervals followed by rapid isothermal depressurization. The particles were then characterized for morphology, polymer thermal properties, particle size, porosity, bulk density, and residual solvent content. Also, deslorelin integrity, conformation, release, and cellular uptake before and after SC CO2 treatment was determined.

Results. Upon SC CO2 treatment (1200 psi, 33°C for 30 min), the mean particle size of the deslorelin PLGA microparticles increased from 2.2 to 13.8 μm, the mean porosity increased from 39 to 92.38%, the mean pore diameter increased from 90 to 190 nm, the mean bulk density reduced from 0. 7 to 0.082 g/cc, mass spectrometry indicated structural integrity of released deslorelin, the circular dichroism spectrum indicated stabilization of β-turn conformation, and the scanning electron microscopy confirmed increased particle size and pore formation. The deslorelin release was sustained during the 7-day study period. Also, the peak Tg of PLGA decreased from 51 to 45°C, and the residual solvent content was reduced from 4500 ppm to below detection limit (< 25 ppm). The accumulation of drug from SC CO2 treated particles in cell layers of Calu-3, A549, and rat alveolar macrophages was reduced by 87, 91 and 50%, respectively, compared to untreated particles.

Conclusion. An SCF-derived process could be successfully applied to prepare large porous deslorelin-PLGA particles with reduced residual solvent content, which retained deslorelin integrity, sustained deslorelin release, and reduced cellular uptake.

deslorelin supercritical porous particles macrophage uptake A549 and Calu-3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Corkery. Inhalable drugs for systemic therapy. Respir. Care 45:831-835 (2000).Google Scholar
  2. 2.
    U. B. Kompella. Protein drug delivery. In S. Wu Pong and Y. Rojanasakul (eds.), Biopharmaceutical Drug Design and Development, Humana Press, Totowa, NJ, 1999 pp. 239-274.Google Scholar
  3. 3.
    V. H. Lee, A. Yamamoto, and U. B. Kompella. Mucosal penetration enhancers for facilitation of peptide and protein drug absorption. Crit. Rev. Ther. Drug Carrier Syst. 8:91-192 (1991).Google Scholar
  4. 4.
    J. G. Hardy and T. S. Chadwick. Sustained release drug delivery to the lungs: an option for the future. Clin. Pharmacokinet. 39:1-4 (2000).Google Scholar
  5. 5.
    J. D. Brain. Macrophages in the respiratory tract. In A. P. Fishman and A. B. Fisher (eds.), Handbook of Physiology: The Respiratory System 1, American Physiological Society, Bethesda, MD, 1985 pp. 447-471.Google Scholar
  6. 6.
    H. M. Courrier, N. Butz, and T. F. Vandamme. Pulmonary drug delivery systems: recent developments and prospects. Crit. Rev. Ther. Drug Carrier Syst. 19:425-498 (2002).Google Scholar
  7. 7.
    U. B. Kompella, and V. H. Lee. Delivery systems for penetration enhancement of peptide and protein drugs: design considerations. Adv. Drug Deliv. Rev. 46:211-245 (2001).Google Scholar
  8. 8.
    D. A. Edwards, A. Ben-Jebria, and R. Langer. Recent advances in pulmonary drug delivery using large, porous inhaled particles. J. Appl. Physiol. 85:379-385 (1998).Google Scholar
  9. 9.
    D. A. Edwards and C. Dunbar. Bioengineering of therapeutic aerosols. Annu. Rev. Biomed. Eng. 4:93-107 (2002).Google Scholar
  10. 10.
    D. A. Edwards, J. Hanes, G. Caponetti, J. Hrkach, A. Ben-Jebria, M. L. Eskew, J. Mintzes, D. Deaver, N. Lotan, and R. Langer. Large porous particles for pulmonary drug delivery. Science 276:1868-1871 (1997).Google Scholar
  11. 11.
    A. Ben-Jebria, D. Chen, M. L. Eskew, R. Vanbever, R. Langer, and D. A. Edwards. Large porous particles for sustained protection from carbachol-induced broncho constriction in guinea pigs. Pharm. Res. 16:555-561 (1999).Google Scholar
  12. 12.
    L. A. Kiesel, A. Rody, R. R. Greb, and A. Szilagyi. Clinical use of GnRH analogues. Clin. Endocrinol. 56:677-687 (2002).Google Scholar
  13. 13.
    M. A. McHugh and V. J. Krukonis. Supercritical Fluid Extraction: Principles and Practice, Butterworth-Heinemann, Newton, 1994.Google Scholar
  14. 14.
    U. B. Kompella, and K. Koushik. Preparation of drug delivery systems using supercritical fluid technology. Crit. Rev. Ther. Drug Carrier Syst. 18:173-199 (2001).Google Scholar
  15. 15.
    J. Thies, and B. W. Muller. Size controlled production of biodegradable microparticles with supercritical gases. Eur. J. Pharm. Biopharm. 45:67-74 (1998).Google Scholar
  16. 16.
    D. J. Dixon, G. Luna-Barcenas, and K. P. Johnston. Microcellular microspheres and microbaloons by precipitation with a vapor-liquid compressed fluid antisolvent. Polymer 35:3998-4005 (1994).Google Scholar
  17. 17.
    F. Ruchatz, P. Kleinebudde, and B. W. Muller. Residual solvents in biodegradable microparticles. Influence of process parameters on the residual solvent in microparticles produced by the aerosol solvent extraction system (ASES) process. J. Pharm. Sci. 86:101-105 (1997).Google Scholar
  18. 18.
    K. N. Koushik, N. Bandi, and U. B. Kompella. Interaction of D-Trp6, Des-Gly10 LHRH ethylamide and hydroxy propyl beta-cyclodextrin (HPβCD): thermodynamics of interaction and protection from degradation by alpha-chymotrypsin. Pharm. Dev. Technol. 6:595-606 (2001).Google Scholar
  19. 19.
    K. A. Foster, M. Yazdanian, and K. L. Audus. Microparticulate uptake mechanisms of in-vitro cell culture models of the respiratory epithelium. J. Pharm. Pharmacol. 53:57-66 (2001).Google Scholar
  20. 20.
    R. W. Woody. Studies of theoretical circular dichroism of polypeptides: Contribution of beta-turns. In E. R. Blout, F. A. Bovey, M. Goodman, and N. Lotan (eds.), Peptides, Polypeptides and Proteins, John Wiley and Sons, New York, 1974 pp. 338-360.Google Scholar
  21. 21.
    J. R. Cann, K. Channabasavaiah, and J. M. Stewart. Circular dichroism study of the solution conformation of luteinizing hormone releasing hormone. Biochemistry 18:5776-5781 (1979).Google Scholar
  22. 22.
    A. I. Bot, T. E. Tarara, D. J. Smith, S. R. Bot, C. M. Woods, and J. G. Weers. Novel lipid-based hollow-porous microparticles as a platform for immunoglobulin delivery to the respiratory tract. Pharm. Res. 17:275-283 (2000).Google Scholar
  23. 23.
    K. Thoma and B. Schluetermann. Relationships between manufacturing parameters and pharmaceutical-technological requirements on biodegradable microparticles. Part 3: Pharmaceutical and technological investigations on the particle size distribution of local anesthetics containing biodegradable microspheres. Pharmazie 47:198-202 (1992).Google Scholar
  24. 24.
    M. van de Weert, W. E. Hennink, and W. Jiskoot. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm. Res. 17:1159-1167 (2000).Google Scholar
  25. 25.
    A. Breitenbach, D. Mohr, and T. Kissel. Biodegradable semi-crystalline comb polyesters influence the microsphere production by means of a supercritical fluid extraction technique (ASES). J. Control. Release 63:53-68 (2000).Google Scholar
  26. 26.
    S. G. Kazarian, M. F. Vincent, F. V. Bright, C. L. Liotta, and C. A. Eckert. Specific intermolecular interaction of carbon dioxide with polymers. J. Am. Chem. Soc. 118:1729-1736 (1996).Google Scholar
  27. 27.
    S. P. Duddu, S. A. Sisk, Y. H. Walter, T. E. Tarara, K. R. Trimble, A. R. Clark, M. A. Eldon, R. C. Elton, M. Pickford, P. H. Hirst, S. P. Newman, and J. G. Weers. Improved lung delivery from a passive dry powder inhaler using an engineered pulmoSphere powder. Pharm. Res. 19:689-695 (2002).Google Scholar
  28. 28.
    R. Vanbever, J. D. Mintzes, J. Wang, J. Nice, D. Chen, R. Batycky, R. Langer, and D. A. Edwards. Formulation and physical characterization of large porous particles for inhalation. Pharm. Res. 16:1735-1742 (1999).Google Scholar
  29. 29.
    G. Sheuch, T. Meyer, K. Sommerer, A. Lichte, W. Pohner, P. Hess, G. Brand, K. Caponetti, J. Haussinger, R. Heyder, R. Batycky, R. Niven, and D. A. Edwards. Measuring in vivo deposition of porous particles, Biannual ISAM meeting. Vienna June:12-16 (1999).Google Scholar
  30. 30.
    J. R. Foster, T. Green, L. L. Smith, S. Tittensor, and I. Wyatt. Methylene chloride: an inhalation study to investigate toxicity in the mouse lung using morphological, biochemical and Clara cell culture techniques. Toxicology 91:221-234 (1994).Google Scholar
  31. 31.
    F. Courteille, J. P. Benoit, and C. Thies. The morphology of progesterone-loaded polystyrene microspheres. J. Control. Release 30:17-26 (1994).Google Scholar
  32. 32.
    R. Deslauriers, G. C. Levy, W. H. McGregor, K. Sarantakis, and I. C. Smith. Conformational flexibility of luteinizing hormone-releasing hormone in aqueous solution. A carbon-13 spin-lattice relaxation time study. Biochemistry 14:4335-4343 (1975).Google Scholar
  33. 33.
    V. S. Ananthanarayanan, O. Salehian, and K. S. Brimble. Interaction of gonadotropin-releasing hormone and its agonist analogs with Ca2+ in a nonpolar milieu. Correlation with biopotencies. J. Pept. Res. 52:185-194 (1998).Google Scholar
  34. 34.
    F. Guarnieri and H. Weinstein. Conformational memories and the exploration of biologically relevant peptide conformations: An illustration for the Gonadotropin-releasing hormone. J. Am. Chem. Soc. 118:5580-5589 (1996).Google Scholar
  35. 35.
    P. Marche, T. Montenay-Garestier, C. Helene, and P. Fromageot. Conformational characteristics of luliberin. Circular dichroism and fluorescence studies. Biochemistry 15:5730-5737 (1976).Google Scholar
  36. 36.
    M. A. Winters, B. L. Knutson, P. G. Debenedetti, H. G. Sparks, T. M. Przybycien, C. L. Stevenson, and S. J. Prestrelski. Precipitation of proteins in supercritical carbon dioxide. J. Pharm. Sci. 85:586-594 (1996).Google Scholar
  37. 37.
    M. A. Winters, P. G. Debenedetti, J. Carey, H. G. Sparks, S. U. Sane, and T. M. Przybycien. Long-term and high-temperature storage of supercritically-processed microparticulate protein powders. Pharm. Res. 14:1370-1378 (1997).Google Scholar
  38. 38.
    M. Lippmann, D. B. Yeates, and R. E. Albert. Deposition, retention, and clearance of inhaled particles. Br. J. Ind. Med. 37:337-362 (1980).Google Scholar
  39. 39.
    Y. Tabata and Y. Ikada. Phagocytosis of polymer microspheres. Adv. Polym. Sci. 94:107-141 (1990).Google Scholar
  40. 40.
    R. S. Byrne and P. B. Deasy. Use of commercial porous ceramic particles for sustained drug delivery. Int. J. Pharm. 246:61-73 (2002).Google Scholar
  41. 41.
    A. V. Schally. LH-RH analogues: I. Their impact on reproductive medicine. Gynecol. Endocrinol. 13:401-409 (1999).Google Scholar
  42. 42.
    J. G. Wenzel, K. S. Balaji, K. Koushik, C. Navarre, S. H. Duran, C. H. Rahe, and U. B. Kompella. Pluronic F127 gel formulations of deslorelin and GnRH reduce drug degradation and sustain drug release and effect in cattle. J. Control. Release 85:51-59 (2002).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmaha

Personalised recommendations