Skip to main content
Log in

Spray-Coating for Biopharmaceutical Powder Formulations: Beyond the Conventional Scale and Its Application

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose: Fluid-bed spray-coating process is widely used to prepare non-protein pharmaceutical solid dosage forms using macro-size seed particles (200-1000 μm) at kilogram batch sizes. In this study we developed a small-scale fluid-bed spray-coating process (20 g) to produce micro-sized vaccine powder formulations (40-60 μm) for epidermal powder immunization (EPI)

Methods: A bench-top spray coater was used to spray two vaccines, diphtheria toxoid (dT) and alum-adsorbed hepatitis-B surface antigen (Alum-HBsAg), onto crystalline lactose particles of 40-60 μm in diameter. Particle properties such as particle size, surface morphology, and degree of particle agglomeration were determined. Protein stability was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The immunogenicity of the vaccine was evaluated in vivo by needle injection and epidermal powder immunization (EPI) of mice or guinea pigs.

Results: Coating feasibility was demonstrated for both vaccine formulations containing different excipients. However, the nature of the vaccine antigen appeared to affect coating feasibility in terms of particle agglomeration considerably. Delivery of spray-coated dT and alum-HBsAg through EPI to mice and guinea pigs, respectively, generated significant antibody responses, at a level comparable to liquid formulation delivered subcutaneously through needle/syringe injection.

Conclusions: The new spray-coating process represents an important technical advance and may provide a useful tool for developing high-valued biopharmaceutical powder formulations for novel applications. The strong in vivo performance of the coated dT and alum-HBsAg powders by EPI further demonstrated that spray-coating is a viable dry powder formulation process and the skin's epidermal layer presents an efficient vaccine delivery route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-F. Maa, and S. J. Prestrelski. Biopharmaceutical powders: Particle formation and formulation considerations (review). Curr. Pharm. Biotechnol. 1:283-302 (2000).

    Google Scholar 

  2. W. R. Gombotz, and L. R. Brown. Process for producing small particles of biologically active molecules. International Patent Application PCT/US90/02421 (1990).

  3. Y.-F. Maa, P.-A. Nguyen, T. D. Sweeney, S. J. Shire, and C. C. Hsu. Protein inhalation powder: Spray drying vs. spray freeze drying. Pharm. Res. 16:249-254 (1999).

    Google Scholar 

  4. H. R. Constantino, L. Firouzabadian, K. Hogeland, C. Wu, C. Beganski, K. G. Carrasquilla, M. Cardova, K. Griebenow, S. E. Zale, and M. A. Tracy. Protein spray freeze drying. Effect of atomisation conditions on particle size and stability. Pharm. Res. 17:1374-1383 (2000).

    Google Scholar 

  5. M. A. Winters, B. L. Knutson, P. G. Debenedetti, H. G. Sparks, T. M. Przybycien, C. L. Stevenson, and S. J. Prestrelski. Precipitation of proteins in supercritical carbon dioxide. J. Pharm. Sci. 85:586-594 (1996).

    Google Scholar 

  6. S.-D. Yeo, G.-B. Lim, P. G. Debenedetti, and H. Bernstein. Formation of microparticulate protein powders using a supercritical fluid antisolvent. Biotechnol. Bioeng. 41:341-346 (1993).

    Google Scholar 

  7. P. York, B. Y. Shekunov, and G. O. Humphreys. Microfine particle formation by SEDS (solution enhanced dispersion by supercritical fluids): Scale up by design. Respiratory Drug Delivery VI Proceedings. Interpharm Press, USA 1998 pp. 169-175.

    Google Scholar 

  8. K. Masters. Spray-Drying Handbook, 4th ed, J. Wiley & Sons, New York, 1985.

    Google Scholar 

  9. J. Broadhead, S. K. Edmond Rouan, and C. T. Rhodes. The spray-drying of pharmaceuticals. Drug Dev. Ind. Pharm. 18:1169-1206 (1992).

    Google Scholar 

  10. J. Broadhead, S. K. Edmond Rouan, I. Hau, and C. T. Rhodes. The effect of process and formulation variables on the properties of spray-dried —galactosidase. Pharm. Pharmacol 64:458-467 (1994).

    Google Scholar 

  11. M. Mumenthaler, C. C. Hsu, and R. Pearlman. Feasibility study on spray-drying protein pharmaceuticals: Recombinant human growth hormone and tissue-type plasminogen activator. Pharm. Res. 11:12-20 (1994).

    Google Scholar 

  12. Y.-F. Maa, P.-A. Nguyen, and C. C. Hsu. Spray drying of air-sensitive recombinant human growth hormone. J. Pharm. Sci. 87:152-159 (1998).

    Google Scholar 

  13. Y.-F. Maa, P.-A. Nguyen, J. D. Andya, N. Dasovich, T. D. Sweeney, S. J. Shire, and C. C. Hsu. Effect of spray drying and subsequent processing conditions on residual moisture content and physical/biochemical stability of protein inhalation powders. Pharm. Res. 15:768-775 (1998).

    Google Scholar 

  14. Y.-F. Maa, R. H. Costantino, P.-A. Nguyen, and C. C. Hsu. The effect of operating and formulation variables on the morphology of spray-dried protein particles. Pharm. Dev. Technol. 2:213-223 (1997).

    Google Scholar 

  15. K. W. Olsen. Batch fluid-bed processing equipment: a design overview; Part I. Pharm. Technol 13:34-46 (1989).

    Google Scholar 

  16. K. W. Olsen. Batch fluid-bed processing equipment: a design overview; Part II. Pharm. Technol 13:46-50 (1989).

    Google Scholar 

  17. Y. Fukumori, H. Ichikawa, Y. Yamaoka, E. Akaho, Y. Takeuchi, T. Fukuda, R. Kanamori, and Y. Osako. Effect of additives on physical properties of fine ethyl cellulose microcapsules prepared by the Würster process. Chem. Pharm. Bull 39:164-169 (1991).

    Google Scholar 

  18. Y. Fukumori, H. Ichikawa, Y. Yamaoka, E. Akaho, Y. Takeuchi, T. Fukuda, R. Kanamori, and Y. Osako. Microgranulation and encapsulation of pulverized pharmaceutical powders with ethyl cellulose by the Würster process. Chem. Pharm. Bull 39:1806-1812 (1991).

    Google Scholar 

  19. Y. Fukumori, H. Ichikawa, K. Jono, T. Fukuda, and Y. Osaka. Effect of additives on agglomeration in aqueous coating with hydroxypropyl cellulose. Chem. Pharm. Bull 41:725-730 (1993).

    Google Scholar 

  20. Y.-F. Maa, P.-A. Nguyen, and C. C. Hsu. Spray coating of rhDNase on lactose: Effect of system design, operational parameters, and protein formulations. Int. J. Pharm. 144:47-59 (1996).

    Google Scholar 

  21. Y.-F. Maa and C. C. Hsu. Feasibility of protein spray-coating using a fluid-bed würster processor. Biotech. Bioeng. 53:560-566 (1997).

    Google Scholar 

  22. D. Chen, R. L. Endres, C. A. Erickson, K. F. Weis, M. W. McGregor, Y. Kawaoka, and L. G. Payne. Epidermal immunization by a needle-free powder delivery technology: Immunogenicity of influenza vaccine and protection in mice. Nat. Med. 6:1187-1190 (2000).

    Google Scholar 

  23. D. Chen, C. A. Erickson, R. L. Endres, S. B. Periwal, Q. Chu, C. Shu, Y.-F. Maa, and L. G. Payne. Adjuvantation of epidermal powder immunization. Vaccine 19:2908-2917 (2001).

    Google Scholar 

  24. S. B. Flohe, C. Bauer, and H. Moll. Antigen-pulsed epidermal Langerhans cells protect susceptible mice from infection with the intracellular parasite Leishmania major. Euro. J. Immunol. 28:3800-3811 (1998).

    Google Scholar 

  25. C. Condon, S. C. Watkins, C. M. Celluzzi, K. Thompson, and L. D. Falo Jr. DNA-based immunization by in vivo transfection of dendritic cells. Nat. Med. 2:1122-1128 (1996).

    Google Scholar 

  26. A. M. Polillio and J. Kiley. Does a needleless injection system reduce anxiety in children receiving intramuscular injections? Pediatr. Nurs. 23:46-49 (1997).

    Google Scholar 

  27. W. S. Shalaby. Development of oral vaccines to stimulate mucosal and systemic immunity: barriers and novel strategies. Clin. Immunol. Immunopathol. 74:127-134 (1995).

    Google Scholar 

  28. L. C. Freytag and J. D. Clements. Bacterial toxins as mucosal adjuvants. Curr. Top. Microbiol. Immunol. 236:215-236 (1999).

    Google Scholar 

  29. M. I. Zapata, J. R. Feldkamp, G. E. Peck, J. L. White, and S. L. Hem. Mechanism of freeze-thaw instability of aluminum hydroxycarbonate and magnesium hydroxide gels. J. Pharm. Sci. 73:3-8 (1984).

    Google Scholar 

  30. D. Diminsky, N. Moav, M. Gorecki, and Y. Barenholz. Physical, chemical, and immunological stability of CHO-derived hepatitis B surface antigen (HBsAg) particles. Vaccine 18:3-17 (1999).

    Google Scholar 

  31. H. S. Warren, F. R. Vogel, and L. A. Chedid. Current status of immunological adjuvants. Annu. Rev. Immunol. 4:369-388 (1986).

    Google Scholar 

  32. C. R. Alving, B. Detrick, R. L. Richards, M. G. Lewis, A. Shafferman, and G. A. Eddy. Novel adjuvant strategies for experimental malaria and AIDS vaccines. Ann. N.Y. Acad. Sci. 690:265-275 (1993).

    Google Scholar 

  33. Y.-F. Maa, L. Zhao, L. G. Payne, and D. Chen. Stabilization of alum-adjuvanted vaccine powder formulation: Mechanism and application. J. Pharm. Sci. 92:319-332 (2003).

    Google Scholar 

  34. S. D. Allison, M. C. Manning, T. W. Randolph, K. Middleton, A. Davis, and J. F. Carpenter. Optimization of storage conditions of lyophilized actin using combination of disaccharides and dextran. J. Pharm. Sci. 89:199-214 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maa, YF., Ameri, M., Rigney, R. et al. Spray-Coating for Biopharmaceutical Powder Formulations: Beyond the Conventional Scale and Its Application. Pharm Res 21, 515–523 (2004). https://doi.org/10.1023/B:PHAM.0000019307.27058.a1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000019307.27058.a1

Navigation