Skip to main content
Log in

Evaluation of Generation 2 and 3 Poly(Propylenimine) Dendrimers for the Potential Cellular Delivery of Antisense Oligonucleotides Targeting the Epidermal Growth Factor Receptor

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To evaluate low generation, G2 and G3, poly(propylenimine) dendrimers for the potential cellular delivery of antisense oligonucleotides (ODNs) targeting the epidermal growth factor receptor (EGFR) in A431 epidermoid carcinoma cells.

Methods. Cell cytotoxicity of the dendrimers was evaluated using trypan blue exclusion assays. Cellular uptake studies of fluorescently labeled ODNs were performed using fluorescence-activated cell sorting analysis. Intracellular fate of dendrimer-delivered ODNs was assessed in both fixed and live cells using fluorescent microscopy. Antisense ODN activity was assessed in terms of cancer cell growth, inhibition of target EGFR protein, and reduction in mRNA levels.

Results. G2 dendrimer (DAB-8) was less toxic than G3 (DAB-16) dendrimer in A431 cells, with IC50 of >175 and ≈30 μg/ml, respectively. Uptake of fluorescently labeled ODN:dendrimer complexes was increased by up to 100-fold compared to a marker of fluid-phase endocytosis and up to 9-fold over free ODN at the optimal dendrimer:ODN (w/w) ratio of 5:1. Uptake of dendrimer:ODN complexes was significantly reduced at 4°C (p < 0.05). Live cell fluorescent microscopy resulted in an intracellular distribution of dendrimer:ODN complexes that was suggestive of endocytic uptake; in contrast, cell fixation resulted in an artefactual nuclear localization. Treatment of A431 cells with anti-EGFR antisense ODN:dendrimer complexes inhibited cell growth, protein, and mRNA expression to levels comparable to Oligofectamine-mediated delivery.

Conclusions. G2 and G3 poly(propylenimine) dendrimers markedly improved the delivery and activity of ODNs and thus may represent general reagents for the delivery of ODNs to cells in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Gewirtz, D. L. Sokol, and M. Z. Ratajczak. Nucleic acid therapeutics: state of the art and future prospects. Blood 92:712-736 (1998).

    Google Scholar 

  2. M. Thomas and A. M. Klibanov. Non-viral gene therapy: polycation-mediated DNA delivery. Appl. Microbiol. Biotechnol. 62:27-34 (2003).

    Google Scholar 

  3. M. Nishikawa and L. Huang. Nonviral vectors in the new millennium: delivery barriers in gene transfer. Hum. Gene Ther. 12:861-870 (2001).

    Google Scholar 

  4. G. Y. Wu, J. M. Wilson, F. Shalaby, M. Grossman, D. A. Shafritz, and C. H. Wu. Receptor-mediated gene delivery in vivo. Partial correction of genetic analbuminemia in Nagase rats. J. Biol. Chem. 266:14338-14342 (1991).

    Google Scholar 

  5. O. Boussif. F. Lezoualc'h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. U. S. A. 92:7297-7301 (1995).

    Google Scholar 

  6. J. F. Kukowska-Latallo, A. U. Bielinska, J. Johnson, R. Spindler, D. A. Tomalia, and J. R. Baker Jr. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc. Natl. Acad. Sci. U. S. A. 93:4897-4902 (1996).

    Google Scholar 

  7. Y. Lim, S. M. Kim, Y. Lee, W. Lee, T. Yang, M. Lee, and H. Suh. and J. Park. Cationic hyperbranched poly(amino ester). a novel class of DNA condensing molecule with cationic surface, biodegradable three-dimensional structure, and tertiary amine groups in the interior. J. Am. Chem. Soc. 123:2460-2461 (2001).

    Google Scholar 

  8. R. C. van Duijvenbode, M. Borkovec, and G. J. M. Koper. Acid-base properties of poly(propylene imine) dendrimers. Polymer 39:2657-2664 (1998).

    Google Scholar 

  9. A. Bielinska, J. F. Kukowska-Latallo, J. Johnson, D. A. Tomalia, and J. R. Baker Jr. Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Res. 24:2176-2182 (1996).

    Google Scholar 

  10. M. X. Tang, C. T. Redemann, and F. C. Szoka Jr. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug. Chem. 7:703-714 (1996).

    Google Scholar 

  11. A. U. Bielinska, C. Chen, J. Johnson, and J. R. Baker Jr. DNA complexing with polyamidoamine dendrimers: implications for transfection. Bioconjug. Chem. 10:843-850 (1999).

    Google Scholar 

  12. I. Toth, T. Sakthivel, A. F. Wilderspin, H. Bayele, M. O'Donnell, D. J. Perry, K. J. Pasi, C. A. Lee, and A. T. Florence. Novel cationic lipidic peptide dendrimer vectors-in vitro gene delivery. STP Pharma Sci. 9:93-99 (1999).

    Google Scholar 

  13. N. Malik, R. Wiwattanapatapee, R. Klopsch, K. Lorenz, H. Frey, J. W. Weener, E. W. Meijer, W. Paulus, and R. Duncan. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control. Rel. 65:133-148 (2000).

    Google Scholar 

  14. G. Pistolis, A. Malliaris, D. Tsiourvas, and C. M. Paleos. Poly-(propyleneimine) dendrimers as pH-sensitive controlled-release systems. Chem. Eur. J. 5:1440-1444 (1999).

    Google Scholar 

  15. C. L. Gebhart and A. V. Kabanov. Evaluation of polyplexes as gene transfer agents. J. Control. Rel. 73:401-416 (2001).

    Google Scholar 

  16. B. H. Zinselmeyer, S. P. Mackay, A. G. Schatzlein, and I. F. Uchegbu. The lower-generation polypropylenimine dendrimers are effective gene-transfer agents. Pharm. Res. 19:960-967 (2002).

    Google Scholar 

  17. C. L. Arteaga. Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist 7:31-39 (2002).

    Google Scholar 

  18. J. Baselga. Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist 7:2-8 (2002).

    Google Scholar 

  19. A. K. Petch, M. Sohail, M. D. Hughes, I. Benter, J. Darling, E. M. Southern, and S. Akhtar. Messenger RNA expression profiling of genes involved in epidermal growth factor signalling in human cancer cells treated with scanning array-designed antisense oligonucleotides. Biochem. Pharmacol. 66:819-830 (2003).

    Google Scholar 

  20. Y. Shoji, S. Akhtar, A. Periasamy, B. Herman, and R. L. Juliano. Mechanism of cellular uptake of modified oligodeoxynucleotides containing methylphosphonate linkages. Nucleic Acids Res. 19:5543-5550 (1991).

    Google Scholar 

  21. R. L. Juliano and S. Akhtar. Liposomes as a drug delivery system for antisense oligonucleotides. Antisense Res. Dev. 2:165-176 (1992).

    Google Scholar 

  22. P. L. Fell, A. J. Hudson, M. A. Reynolds, N. Usman, and S. Akhtar. Cellular uptake properties of a 2′-amino/2′-O-methyl-modified chimeric hammerhead ribozyme targeted to the epidermal growth factor receptor mRNA. Antisense Nucleic Acid Drug Dev. 7:319-326 (1997).

    Google Scholar 

  23. J. P. Richard, K. Melikov, E. Vives, C. Ramos, B. Verbeure, M. J. Gait, L. V. Chernomordik, and B. Lebleu. Cell-penetrating peptides: a reevaluation of the mechanism of cellular uptake. J. Biol.Chem. 278:585-590 (2003).

    Google Scholar 

  24. P. E. Thoren, D. Persson, P. Isakson, M. Goksor, A. Onfelt, and B. Norden. Uptake of analogs of penetratin, Tat(48-60) and oligoarginine in live cells. Biochem. Biophys. Res. Commun. 307:100-107 (2003).

    Google Scholar 

  25. G. Drin, S. Cottin, E. Blanc, A. R. Rees, and J. Temsamani. Studies on the internalization mechanism of cationic cell-penetrating peptides. J. Biol. Chem. 278:31192-31201 (2003).

    Google Scholar 

  26. A. Ziegler, X. L. Blatter, A. Seelig, and J. Seelig. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Biochemistry 42:9185-9194 (2003).

    Google Scholar 

  27. J. M. Coulson, D. R. Poyner, A. Chantry, W. J. Irwin, and S. Akhtar. A nonantisense sequence-selective effect of a phosphorothioate oligodeoxynucleotide directed against the epidermal growth factor receptor in A431 cells. Mol. Pharmacol. 50:314-325 (1996).

    Google Scholar 

  28. I. Jaaskelainen and A. Urtti. Cell membranes as barriers for the use of antisense therapeutic agents. Mini Rev. Med. Chem. 2:307-318 (2002).

    Google Scholar 

  29. S. Akhtar, M. D. Hughes, A. Khan, M. Bibby, M. Hussain, Q. Nawaz, J. Double, and P. Sayyed. The delivery of antisense therapeutics. Adv. Drug Deliv. Rev. 44:3-21 (2000).

    Google Scholar 

  30. M. D. Hughes, M. Hussain, Q. Nawaz, P. Sayyed, and S. Akhtar. The cellular delivery of antisense oligonucleotides and ribozymes. Drug Discov. Today 6:303-315 (2001).

    Google Scholar 

  31. M. Hussain, M. Shchepinov, M. Sohail, A. J. Hollins, E. M. Southern, and S. Akhtar. A novel anionic dendrimer for improved delivery of antisense oligonucleotides. Submitted (2004).

  32. S. Dheur, N. Dias, A. van Aerschot, P. Herdewijn, T. Bettinger, J. S. Remy, C. Helene, and E. T. Saison-Behmoaras. Polyethylenimine but not cationic lipid improves antisense activity of 3′-cappedphosphodiester oligonucleotides. Antisense Nucleic Acid Drug Dev. 9:515-525 (1999).

    Google Scholar 

  33. R. Delong, K. Stephenson, T. Loftus, M. Fisher, S. Alahari, A. Nolting, and R. L. Juliano. Characterization of complexes of oligonucleotides with polyamidoamine starburst dendrimers and effects on intracellular delivery. J. Pharm. Sci. 86:762-764 (1997).

    Google Scholar 

  34. N. Sato, H. Kobayashi, T. Saga, Y. Nakamoto, T. Ishimori, K. Togashi, Y. Fujibayashi, J. Konishi, and M. W. Brechbiel. Tumor targeting and imaging of intraperitoneal tumors by use of antisense oligo-DNA complexed with dendrimers and/or avidin in mice. Clin. Cancer Res. 7:3606-3612 (2001).

    Google Scholar 

  35. W. T. Godbey, K. K. Wu, and A. G. Mikos. Poly(ethylenimine) and its role in gene delivery. J. Control. Rel. 60:149-160 (1999).

    Google Scholar 

  36. P. de Diesbach. F. N'Kuli, C. Berens, E. Sonveaux, M. Monsigny, A. C. Roche, and P. J. Courtoy. Receptor-mediated endocytosis of phosphodiester oligonucleotides in the HepG2 cell line: evidence for non-conventional intracellular trafficking. Nucleic Acids Res. 30:1512-1521 (2002).

    Google Scholar 

  37. M. Berton, L. Benimetskaya, E. Allemann, C. A. Stein, and R. Gurny. Uptake of oligonucleotide-loaded nanoparticles in prostatic cancer cells and their intracellular localization. Eur. J. Pharm. Biopharm. 47:119-123 (1999).

    Google Scholar 

  38. A. R. Thierry, E. Vives, J. P. Richard, P. Prevot, C. Martinand-Mari, I. Robbins, and B. Lebleu. Cellular uptake and intracellular fate of antisense oligonucleotides. Curr. Opin. Mol. Ther. 5:133-138 (2003).

    Google Scholar 

  39. T. Bieber, W. Meissner, S. Kostin, A. Niemann, and H. P. Elsasser. Intracellular route and transcriptional competence of polyethylenimine-DNA complexes. J. Control. Rel. 82:441-454 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saghir Akhtar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollins, A.J., Benboubetra, M., Omidi, Y. et al. Evaluation of Generation 2 and 3 Poly(Propylenimine) Dendrimers for the Potential Cellular Delivery of Antisense Oligonucleotides Targeting the Epidermal Growth Factor Receptor. Pharm Res 21, 458–466 (2004). https://doi.org/10.1023/B:PHAM.0000019300.04836.51

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000019300.04836.51

Navigation