Skip to main content
Log in

Oxidation of Hantzsch 1,4-Dihydropyridines of Pharmacological Significance by Electrogenerated Superoxide

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To study the reaction of a series of Hantzsch dihydropyridines with pharmacological significance such as, nifedipine, nitrendipine, nisoldipine, nimodipine, isradipine and felodipine, with electrogenerated superoxide in order to identify products and postulate a mechanism.

Methods. The final pyridine derivatives were separated and identified by gas chromatography/mass spectrometry (GC-MS). The intermediates, anion dihydropyridine and the HO2 / HO2 species, were observed from voltammetric studies and controlled potential electrolysis was used to electrogenerate O2 .

Results. The current work reveals that electrogenerated superoxide can quantitatively oxidize Hantzsch dihydropyridines to produce the corresponding aromatized pyridine derivatives.

Conclusions. Our results indicate that the aromatization of Hantzsch dihydropyridines by superoxide is initiated by proton transfer from the N1-position on the 1,4-dihydropyridine ring to give the corresponding anion dihydropyridine, which readily undergoes further homogeneous oxidations to provide the final aromatized products. The oxidation of the anionic species of the dihydropyridine is more easily oxidized than the parent compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Halliwell and J. M. C. Gutteridge. Free Radicals in Biology and Medicine, 3rd ed., University Press, New York, 1999.

    Google Scholar 

  2. D. T. Sawyer, M. J. Gibian, M. M. Morrison, and E. T. Sea. On the chemical reactivity of superoxide. J. Am. Chem. Soc. 100:627-628 (1978).

    Google Scholar 

  3. T. Okajima and T. Osaka. Chemiluminiscence of 3-methylindole based on electrogeneration of superoxide ion in acetonitrile solutions. J. Electroanal. Chem. 523:34-39 (2002).

    Google Scholar 

  4. M. V. Merrit and D. T. Sawyer. Electrochemical studies of the reactivity of superoxide ion with several alkyl halides in dimethyl sulfoxide. J. Org. Chem. 35:2157-2159 (1970).

    Google Scholar 

  5. D. T. Sawyer, J. J. Stamp, and K. A. Menton. Reactivity of superoxide ion with ethyl pyruvate, α-diketones, and benzil in dimethylformamide. J. Org. Chem. 48:3733-3736 (1983).

    Google Scholar 

  6. R. Dietz, A. E. J. Forno, B. E Larcombe., and M. E. Peover. Nucleophilic reactions of electrogenerated superoxide ion. J. Chem. Soc. B. 1970; 816-820.

  7. T. S. Calderwood, R. C. Neuman, and D. T. Sawyer. Oxygenation of chloroalkenes by superoxide in aprotic media. J. Am. Chem. Soc. 105:3337-3339 (1983).

    Google Scholar 

  8. R. Poupko and I. Rosenthal. Electron transfer interactions between superoxide ion and organic compounds. J. Phys. Chem. 77:1722-1724 (1973).

    Google Scholar 

  9. J. S. Valentine and A. B. Curtis. A convenient preparation of solutions of superoxide anion and the reaction of superoxide anion with a copper(II) complex. J. Am. Chem. Soc. 97:224-226 (1975).

    Google Scholar 

  10. Y. Moro-oka and C. S. Foote. Chemistry of superoxide ion. I. Oxidation of 3,5-di-tert-butylcatechol with potassium superoxide. J. Am. Chem. Soc. 98:1510-1514 (1976).

    Google Scholar 

  11. D. T. Sawyer and M. J. Gibian. The chemistry of superoxide ion. Tetrahedron 35:1471-1481 (1979).

    Google Scholar 

  12. O. Aruoma, C. Smith, R. Cecchini, P. Evans, and B. Halliwell. Free radical scavenging and inhibition of lipid peroxidation by β-blockers and by agents that interfere with calcium metabolism: a physiologically-significant process? Biochem. Pharm. 42:735-743 (1991).

    Google Scholar 

  13. R. P. Mason, I. T. Mak, M. W. Trumbore, and P. E. Mason. Antioxidant properties of calcium antagonists related to membrane biophysical interactions. Am. J. Cardiol. 84:16L-22L (1999).

    Google Scholar 

  14. I. Mak, P. Boheme, and W. Weglicki. Antioxidant effects of calcium channel blockers against free radical injury in endothelial cells. Circ. Res. 70:1099-1103 (1992).

    Google Scholar 

  15. F. Van Amsterdam, A. Roveri, M. Maiorino, E. Ratti, and F. Ursini. Lacidipine: a dihydropyridine calcium antagonist with antioxidant activity. Free Rad. Biol. Med. 12:183-187 (1992).

    Google Scholar 

  16. R. Toniolo, F. Di Narda, G. Bontempelli, and F. Ursini. An electroanalytical investigation on the redox properties of lacidipine supporting its anti-oxidant effect. Bioelectrochem. 51:193-200 (2000).

    Google Scholar 

  17. G. Díaz-Araya, L. Godoy, L. Naranjo, J. A. Squella, M. E. Letelier, and L. J. Núñez-Vergara. Antioxidant effects of 1,4-dihydropyridine and nitroso aryl derivatives on the Fe+3/ascorbate-stimulated lipid peroxidation in rat brain slices. Gen. Pharmac. 31:385-391 (1998).

    Google Scholar 

  18. N. Nakamichi, Y. Kawashita, and M. Hayashi. Oxidative aromatization of 1,3,5-trisubstituted pyrazolines and Hantzsch 1,4-dihydropyridines by Pd/C in acetic acid. Org. Lett. 4:3955-3957 (2002).

    Google Scholar 

  19. J. R. Pfister. Rapid, high-yield oxidation of hantzsch-type 1,4-dihydropyridines with ceric ammonium-nitrate. Synthesis Stuttgart 8:689-690 (1990).

    Google Scholar 

  20. A. Maquestiau, A. Mayence, and J. Eynde. Ultrasound-promoted aromatization of Hantzsch 1,4-dihydropyridines by clay-supported cuptic nitrate. Tetrahedron Lett. 32:3839-3840 (1991).

    Google Scholar 

  21. J. Eynde, A. Mayence, and A. Maquestiau. A novel application of the oxidizing properties of pyridinium chlorochromate: aromatization of Hantzsch 1,4-dihydropyridines. Tetrahedron 48:463-468 (1992).

    Google Scholar 

  22. R. Böcker and F. P. Guengerich. Oxidation of 4-aryl-and 4-alkyl-substituted 2,6-dimethyl-3,5-bis(alkoxycarbonyl)-1,4-dihydropyridines by human liver microsomes and immunochemical evidence for the involvement of a form of cytochrome P-450. J. Med. Chem. 29:1596-1603 (1986).

    Google Scholar 

  23. T. Itoh, K. Nagata, M. Okada, and A. Ohsawa. Tetrahedron Lett. 36:2269-2272 (1995).

    Google Scholar 

  24. X.-Q. Zhu, B.-J. Zhao, and J.-P. J. Cheng. Org. Chem. 65:8158-8163 (2000).

    Google Scholar 

  25. M. E. Ortiz, L. J. Nüñez-Vergara, and J. A. Squella. Cyclic voltammetric behaviour of the O2/O2 -redox couple at HMDE and its interaction with nisoldipine. J.Electroanal.Chem. 519:46-52 (2002).

    Google Scholar 

  26. M. E. Ortiz, L. J. Nüñez-Vergara, and J. A. Squella. Relative reactivity of dihydropyridine derivatives to electrogenerated superoxide ion in DMSO solutions: a voltammetric approach. Pharm. Res. 20:289-293 (2003).

    Google Scholar 

  27. C. López-Alarcón, P. Navarrete, C. Camargo, J. A. Squella, and L. J. Nüñez-Vergara. Reactivity of 1,4-dihydropyridines toward alkyl, alkylperoxyl radicals, and ABTS radical cation. Chem. Res. Toxicol. 16:208-215 (2003).

    Google Scholar 

  28. R. Arudi, O. Allen, and R. Bielski. Some observations on the chemistry of KO2-DMSO solutions. FEBS Lett. 135:265-267 (1981).

    Google Scholar 

  29. J. Zhang, W. Pietro, and A. Lever. Rotating ring-disc electrode analysis of CO2 reduction electrocatalyzed by a cobalt tetramethylpyridoporphyrazine on the disk and detected as CO on platinum ring. J. Electroanal.Chem. 403:93-100 (1996).

    Google Scholar 

  30. R. S. Nicholson. Semiempirical procedure for measuring with stationary electrode polarography rates of chemical reactions involving the product of electron transfer. Anal. Chem. 38:1406(1966).

    Google Scholar 

  31. T. Okajima and T. Ohsaka. Chemiluminescence of indole and its derivatives induced by electrogenerated superoxide ion in acetonitrile solutions. Electrochimica Acta 47:1561-1565 (2002).

    Google Scholar 

  32. D. T. Sawyer, G. Chericato Jr. C. T. Angelis, E. J. Nanni Jr., and T. Tsuchiya. Effects of media and electrode materials on the electrochemical reduction of dioxygen. Anal. Chem. 54:1720-1724 (1982).

    Google Scholar 

  33. J. A. Squella, G. Jiménez, S. Bollo, and L. J. Nüñez-Vergara. Electroreduction of 4-(nitrophenyl) substituted 1,4-dihydropyridines on the mercury electrode in aprotic medium. Electrochimica Acta 42:2305-2312 (1997).

    Google Scholar 

  34. E. J. Nanni, M. D. Stallings, and D. T. Sawyer. Does superoxide ion oxidize catechol, α-tocopherol, and ascorbic acid by direct electron transfer? J. Am. Chem. Soc. 102:4481-4485 (1980).

    Google Scholar 

  35. P. Cofré and D. T. Sawyer. Redox chemistry of hydrogen peroxide in anhydrous acetonitrile. Inorg. Chem. 25:2089-2092 (1986).

    Google Scholar 

  36. P. S. Prabha, U. N. Das, R. Koratkar, P. Sangeetha Sagar, and G. Ramesh. Free radical generation, lipid peroxidation and essential fatty acid in uncontrolled essential hypertension, Prostaglandine. Leukotrienes Essent. Fatty Acids 41:23-27 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Squella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortiz, M.E., Núñez-Vergara, L.J., Camargo, C. et al. Oxidation of Hantzsch 1,4-Dihydropyridines of Pharmacological Significance by Electrogenerated Superoxide. Pharm Res 21, 428–435 (2004). https://doi.org/10.1023/B:PHAM.0000019295.32103.e4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000019295.32103.e4

Navigation