Skip to main content
Log in

Pharmacodynamics of in Vivo Nitroglycerin Tolerance in Normal Conscious Rats: Effects of Dose and Dosing Protocol

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. We examined the effects of dose and dosing protocol on the pharmacodynamics of in vivo nitroglycerin (NTG) tolerance in conscious rats. Mechanism-based pharmcokinetic/pharmacodynamic (PK/PD) models were tested for their ability to describe the observed data.

Methods. Rats were infused with 1, 3, or 10 μg/min of NTG or vehicle for 10 h. Peak mean arterial pressure (MAP) response to an hourly 30 μg i.v. NTG challenge dose (CD) was measured before, during, and at 12 and 24 h after infusion. In separate experiments, the MAP effects of repeated bolus doses of NTG were compared to those after a continuous infusion, both at a total dose of 510 μg NTG.

Results. NTG tolerance was indicated by a decrease in peak MAP response to the CD, relative to the preinfusion peak MAP response. Tolerance toward the MAP effects of bolus CD was observed within 1 h of 10 μg/min of NTG infusion (26.8 ± 2.8% vs. 10.6 ± 0.4% for 0 and 1 h, respectively, p < 0.001), and the rate and extent of tolerance development increased with the infusion dose. No apparent MAP tolerance was observed when NTG was given as multiple bolus doses whereas significant MAP tolerance was observed when this dose was infused continuously. PK/PD modeling indicated that a cofactor/enzyme depletion mechanism could adequately describe the composite data.

Conclusions. Our data showed that in vivo nitrate tolerance was dose- and dosing protocol-dependent. The pharmacodynamics of tolerance development are consistent with depletion of either critical enzymes or cofactors that are necessary to induce vasodilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. L. Fung and J. A. Bauer. Mechanisms of nitrate tolerance. Cardiovasc. Drugs Ther. 8:489-499 (1994).

    Google Scholar 

  2. D. D. Stewart. Remarkable tolerance to nitroglycerin. Polyclinic 6:43(1888).

    Google Scholar 

  3. H. DeMots and S. P. Glasser. Intermittent transdermal nitroglycerin therapy in the treatment of chronic stable angina. J. Am. Coll. Cardiol. 13:786-795 (1989).

    Google Scholar 

  4. J. O. Parker and H. L. Fung. Transdermal nitroglycerin in angina pectoris. Am. J. Cardiol. 54:471-476 (1984).

    Google Scholar 

  5. K. Sakai and O. Kuromaru. Nitrate tolerance: comparison of nicorandil, isosorbide dinitrate, and nitroglycerin in anesthetized dogs. J. Cardiovasc. Pharmacol. 10:S17-S24 (1987).

    Google Scholar 

  6. J. A. Bauer and H. L. Fung. Effects of chronic glyceryl trinitrate on left ventricular hemodynamics in a rat model of congestive heart failure: demonstration of a simple animal model for the study of in vivo nitrate tolerance. Cardiovasc. Res. 24:198-203 (1990).

    Google Scholar 

  7. E. A. Kowaluk and H. L. Fung. Dissociation of nitrovasodilator-induced relaxation from cyclic GMP levels during in vitro nitrate tolerance. Eur. J. Pharmacol. 176:91-95 (1990).

    Google Scholar 

  8. C. M. Newman, J. B. Warren, G. W. Taylor, A. R. Boobis, and D. S. Davies. Rapid tolerance to the hypotensive effects of glyceryl trinitrate in the rat: prevention by N-acetyl-L-but not N-acetyl-D-cysteine. Br. J. Pharmacol. 99:825-829 (1990).

    Google Scholar 

  9. T. Munzel, H. Sayegh, B. A. Freeman, M. M. Tarpey, and D. G. Harrison. Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and cross-tolerance. J. Clin. Invest. 95:187-194 (1995).

    Google Scholar 

  10. I. S. De la Lande, I. Stafford, and J. D. Horowitz. Effects of guanylyl cyclase and protein kinase G inhibitors on vasodilatation in non-tolerant and tolerant bovine coronary arteries. Eur. J. Pharmacol. 370:39-46 (1999).

    Google Scholar 

  11. B. P. Booth, S. Jacob, J. A. Bauer, and H. L. Fung. Sustained antiplatelet properties of nitroglycerin during hemodynamic tolerance in rats. J. Cardiovasc. Pharmacol. 28:432-438 (1996).

    Google Scholar 

  12. H. L. Fung, S. C. Sutton, and A. Kamiya. Blood vessel uptake and metabolism of organic nitrates in the rat. J. Pharmacol. Exp. Ther. 228:334-341 (1984).

    Google Scholar 

  13. J. A. Bauer and H. L. Fung. Pharmacodynamic models of nitroglycerin-induced hemodynamic tolerance in experimental heart failure. Pharm. Res. 11:816-823 (1994).

    Google Scholar 

  14. S. J. Chung and H. L. Fung. Relationship between nitroglycerin-induced vascular relaxation and nitric oxide production. Probes with inhibitors and tolerance development. Biochem. Pharmacol. 45:157-163 (1993).

    Google Scholar 

  15. P. Needleman, B. Jakschik, and E. M. Johnson, Jr. Sulfhydryl requirement for relaxation of vascular smooth muscle. J. Pharmacol. Exp. Ther. 187:324-331 (1973).

    Google Scholar 

  16. P. Needleman and E. M. Johnson, Jr. Mechanism of tolerance development to organic nitrates. J. Pharmacol. Exp. Ther. 184:709-715 (1973).

    Google Scholar 

  17. S. J. Chung, S. Chong, P. Seth, C. Y. Jung, and H. L. Fung. Conversion of nitroglycerin to nitric oxide in microsomes of the bovine coronary artery smooth muscle is not primarily mediated by glutathione-S-transferases. J. Pharmacol. Exp. Ther. 260:652-659 (1992).

    Google Scholar 

  18. W. I. Lee and H. L. Fung. Mechanism-based partial inactivation of glutathione S-transferases by nitroglycerin: tyrosine nitration vs sulfhydryl oxidation. Nitric Oxide 8:103-110 (2003).

    Google Scholar 

  19. H. L. Fung and R. Poliszczuk. Nitrosothiol and nitrate tolerance. Z. Kardiol. 75:25-27 (1986).

    Google Scholar 

  20. N. L. Dayneka, V. Garg, and W. J. Jusko. Comparison of four basic models of indirect pharmacodynamic responses. J. Pharmacokinet. Biopharm. 21:457-478 (1993).

    Google Scholar 

  21. J. E. Shaffer, B. J. Han, W. H. Chern, and F. W. Lee. Lack of tolerance to a 24-hour infusion of S-nitroso N-acetylpenicillamine (SNAP) in conscious rabbits. J. Pharmacol. Exp. Ther. 260:286-293 (1992).

    Google Scholar 

  22. D. Zimrin, N. Reichek, K. T. Bogin, G. Aurigemma, P. Douglas, B. Berko, and H. L. Fung. Antianginal effects of intravenous nitroglycerin over 24 hours. Circulation 77:1376-1384 (1988).

    Google Scholar 

  23. J. C. Cowan, J. P. Bourke, D. S. Reid, and D. G. Julian. Prevention of tolerance to nitroglycerin patches by overnight removal. Am. J. Cardiol. 60:271-275 (1987).

    Google Scholar 

  24. H. L. Fung. Clinical pharmacology of organic nitrates. Am. J. Cardiol. 72:9C–13C; discussion 14C–15C (1993).

    Google Scholar 

  25. R. Morris and A. Munkarah. Alternate dosing schedules for topotecan in the treatment of recurrent ovarian cancer. Oncologist 7(Suppl 5):29-35 (2002).

    Google Scholar 

  26. C. H. Kleinbloesem, P. van Brummelen, and D. D. Breimer. Nifedipine. Relationship between pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 12:12-29 (1987).

    Google Scholar 

  27. P. S. Yap and H. L. Fung. Pharmacokinetics of nitroglycerin in rats. J. Pharm. Sci. 67:584-586 (1978).

    Google Scholar 

  28. K. E. Torfgard, J. Ahlner, K. L. Axelsson, B. Norlander, and A. Bertler. Tissue disposition of glyceryl trinitrate, 1,2-glyceryl dinitrate, and 1,3-glyceryl dinitrate in tolerant and nontolerant rats. Drug Metab. Dispos. 20:553-558 (1992).

    Google Scholar 

  29. K. Hasegawa, T. Taniguchi, K. Takakura, Y. Goto, and I. Muramatsu. Possible involvement of nitroglycerin converting step in nitroglycerin tolerance. Life Sci. 64:2199-2206 (1999).

    Google Scholar 

  30. P. R. Sage, I. S. de la Lande, I. Stafford, C. L. Bennett, G. Phillipov, J. Stubberfield, and J. D. Horowitz. Nitroglycerin tolerance in human vessels: evidence for impaired nitroglycerin bioconversion. Circulation 102:2810-2815 (2000).

    Google Scholar 

  31. E. Q. Wang, W. I. Lee, D. Brazeau, and H. L. Fung. cDNA microarray analysis of vascular gene expression after nitric oxide donor infusions in rats: implications for nitrate tolerance mechanisms. AAPS PharmSci 4:E10(2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Leung Fung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, E.Q., Balthasar, J.P. & Fung, HL. Pharmacodynamics of in Vivo Nitroglycerin Tolerance in Normal Conscious Rats: Effects of Dose and Dosing Protocol. Pharm Res 21, 114–120 (2004). https://doi.org/10.1023/B:PHAM.0000012158.80991.7e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000012158.80991.7e

Navigation