Skip to main content
Log in

Biodegradable Triblock Copolymer of PLGA-PEG-PLGA Enhances Gene Transfection Efficiency

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. A tri-block copolymer of PLGA-PEG-PLGA was used as an excipient to enhance the gene transfection efficiency of various cationic polymeric carriers.

Methods. Luciferase plasmid DNA was complexed with polyethylenimine for gene transfection. Various concentrations of PLGA-PEG-PLGA copolymer up to 0.5% were added in the transfection medium to explore whether the copolymer increased the level of gene expression. Pluronic F68 was used as a control. Various polyplexes and different cell lines were used to verify the effect of the triblock copolymer on gene transfection. The cellular uptake extent of radiolabeled plasmid was quantitatively determined as a function of PLGA-PEG-PLGA concentration.

Results. PLGA-PEG-PLGA copolymer significantly enhanced gene transfection efficiency at a concentration as low as 0.25% (w/v), which was more effective than Pluronic F68 at the same concentration range. The additive effect of the triblock copolymer in the transfection medium was clearly observed for various cationic polyplexes and cell lines, although the gene expression extents largely depended on polymers and cell lines used. Five- to 10-fold increment of gene transfection levels were attained in the presence of the PLGA-PEG-PLGA tri-block copolymer. The enhanced gene transfection efficiency was attributed to the increased cellular uptake of PEI/DNA complexes in the presence of the PLGA-PEG-PLGA tri-block copolymer.

Conclusions. Biodegradable PLGA-PEG-PLGA tri-block copolymer that facilitates the endocytic process can be used as a novel additive in non-viral gene transfection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. D. Ledley. Nonviral gene therapy: the promise of genes as pharmaceutical products. Hum. Gene Ther. 6:1129-1144 (1995).

    Google Scholar 

  2. A. Rolland and P. Felgner. (eds). Non-viral gene delivery systems. Adv. Drug Del. Rev. 30:1-227 (1998).

  3. S. C. De Smedt, J. Demeester, and W. E. Hennink. Cation polymer based gene delivery systems. Pharm. Res. 17:113-126 (2000).

    Google Scholar 

  4. O. Boussif, F. Lezoualc'h, M. A, Zanta, M. D. Mergny, D. Scheman, B. Demeneix, and J. P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92:7297-7303 (1995).

    Google Scholar 

  5. J. H. Jeong, S. H. Song, D. W. Lim, H. Lee, and T. G. Park. DNA Transfection Using Linear Poly(ethylenimine) Prepared by Controlled Acid Hydrolysis of Poly(2-ethyl-2-oxazoline). J. Control. Release 73:391-399 (2001).

    Google Scholar 

  6. R. J. Mumper, J. G. Duguid, K. Anwer, M. K. Barron, H. Nitta, and A. P. Rolland. Polyvinyl derivatives as novel interactive polymers for controlled gene delivery to muscle. Pharm. Res. 13:701-709 (1996).

    Google Scholar 

  7. P. L. Felgner, T. R. Gader, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Nerthrop, G. M. Ringold, and M. Danielsen. Lipofection: a highly efficient, lipid-mediated DNA transfection procedure. Proc. Natl. Acad. Sci. USA 84:7412-7417 (1987).

    Google Scholar 

  8. S. Han, R. I. Mahato, and S. W. Kim. Water-soluble lipopolymer for gene delivery. Bioconjug. Chem. 12:337-345 (2001).

    Google Scholar 

  9. Y. H. Choi, F. Liu, J. S. Park, and S. W. Kim. Lactose-poly(ethylene glycol)-grafted poly-L-lysine as hepatoma cell targeted gene carrier. Bioconjug. Chem. 9:708-718 (1998).

    Google Scholar 

  10. H. Lee, J. H. Jeong, and T. G. Park. PEG grafted polylysine with fusogenic peptide for gene delivery: high transfection efficiency with low cytotoxicity. J. Control. Release 79:283-291 (2002).

    Google Scholar 

  11. H. Lee, J. H. Jeong, and T. G. Park. A New Gene Delivery Formulation of polyethyleneimine/DNA complexes coated with PEG conjugated fusogenic peptide. J. Control. Release 76:138-192 (2001).

    Google Scholar 

  12. P. Lemieux, N. Guerin, G. Paradis, R. Proulx, L. Chistyakova, A. Kabanov, and V. Alakhov. A combination of poloxamers increases gene expression of plasmid DNA in skeletal muscle. Gene Ther. 7:986-991 (2000).

    Google Scholar 

  13. J. Liaw, S.-F. Chang, and F.-C. Hsiao. In vivo gene delivery into ocular tissues by eye drops of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) polymeric micelles. Gene Ther. 8:999-1004 (2001).

    Google Scholar 

  14. H.-K. Nguyen, P. Lemieux, S. V. Vinogradov, C. L. Gebhart, N. Guerin, G. Paradis, T. K. Bronich, V. Y. Alakhov, and A. V. Kabanov. Evaluation of polyether-polyethylenimine graft copolymers as gene transfer agents. Gene Ther. 7:986-991 (2000).

    Google Scholar 

  15. I. Astafieva, I. Maksimova, E. Lukanidin, V. Alakhov, and A. Kabanov. Enhancement of the polycation-mediated uptake and cell transfection with Pluronic P85 block co-polymer. FEBS Lett. 389:278-280 (1996).

    Google Scholar 

  16. C. W. Cho, Y. S. Cho, H. K. Lee, Y. I. Yeom, S. N. Park, and D. Y. Yoon. Improvement of receptor-mediated gene delivery to HepG2 cells using an amphiphilic gelling agent. Biotechnol. Appl. Biochem. 32:21-26 (2000).

    Google Scholar 

  17. B. Jeong, Y. H. Bae, D. S. Lee, and S. W. Kim. Biodegradable block copolymers as injectable drug delivery systems. Nature 388:860-862 (1997).

    Google Scholar 

  18. F. Liu, J. Yang, L. Huang, and D. Liu. Effect of non-ionic surfactants on the formation of DNA/emulsion complexes and emulsion-mediated gene transfer. Pharm. Res. 13:1642-1646 (1996).

    Google Scholar 

  19. J. Hartikka, L. Sukhu, C. Buchner, D. Hazard, V. Bozoukova, M. Margalith, W. K. Nishioka, C. J. Wheeler, M. Manthorp, and M. Sawdey. Electroporation-facilitated delivery of plasmid DNA in skeletal muscle: plasmid dependence of muscle damage and effect of poloxamer 188. Mol. Ther. 4:407-415 (2001).

    Google Scholar 

  20. M. Y. Kozlov, N. S. Melik-Nubarov, E. V. Batrakova, and A. V. Kabanov. Relationship between Pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes. Macromolecules 33:3305-3313 (2000).

    Google Scholar 

  21. A. V. Kabanov, P. Lemieux, S. Vinogradov, and V. Alakhov. Pluronic® block copolymers: novel functional molecules for gene therapy. Adv. Drug Del. Rev. 54:223-233 (2002).

    Google Scholar 

  22. V. Alakhov, E. Moskaleva, E. V. Batrakova, and A. V. Kabanov. Hypersensitization of multidrug resistant human ovarian carcinoma cells by Pluronic P85 block copolymer. Bioconjug. Chem. 7:209-216 (1995).

    Google Scholar 

  23. V. Alakhov and A. V. Kabanov. Block copolymeric biotransport carriers as versatile vehicles for drug delivery. Exp. Op. Invest. Drugs 7:1453-1473 (1998).

    Google Scholar 

  24. G. M. Zentner, R. Rathi, C. Shih, J. C. McRea, M.-H. Seo, H. Oh, B. G. Rhee, J. Mestecky, Z. Moldoveanu, M. Morgan, and S. Weitman. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J. Control Release. 72:203-215 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Gwan Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, J.H., Kim, S.W. & Park, T.G. Biodegradable Triblock Copolymer of PLGA-PEG-PLGA Enhances Gene Transfection Efficiency. Pharm Res 21, 50–54 (2004). https://doi.org/10.1023/B:PHAM.0000012151.05441.bf

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000012151.05441.bf

Navigation