Skip to main content
Log in

Strategies to Improve DNA Polyplexes for in Vivo Gene Transfer: Will “Artificial Viruses” Be the Answer?

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

For the purpose of introducing nucleic acids into cells, cationic polymers have been steadily improved as gene carriers. This has resulted in improved polymer-based gene transfer formulations, termed polyplexes, which efficiently transfect cell cultures and also have shown encouraging gene transfer potential in in vivo administration. Targeted delivery to liver, lung, tumor, or other tissues has been achieved in experimental animals by localized or systemic application. Therapeutic effect has been demonstrated, although efficiencies are still too low to justify clinical use. The limitations of first-generation polymeric carriers (modest activity and significant toxicity) have been addressed by developments of new biodegradable polycations, incorporation of targeting and intracellular transport functions, and polyplex formulations that avoid unspecific adverse interactions with the host. A key future step will be the development of polyplexes into artificial viruses, with virus-like entry functions presented by smart polymers and polymer conjugates. These polymers have to sense their biologic microenvironment, respond in a more dynamic manner to alterations in pH, ionic or redox environment, undergoing programmed structural changes compatible with the different gene delivery steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. E. Smull and E. H. Ludwig. Enhancement of the plaque forming capacity of poliovirus ribonucleic acid with basic proteins. J. Bacteriol. 84:1035-1040 (1962).

    Google Scholar 

  2. A. Vaheri and J. S. Pagano. Infectious poliovirus RNA: a sensitive method of assay. Virology 27:434-436 (1965).

    Google Scholar 

  3. P. L. Felgner, Y. Barenholz, J. P. Behr, S. H. Cheng, P. Cullis, L. Huang, J. A. Jessee, L. Seymour, F. Szoka, A. R. Thierry, E. Wagner, and G. Wu. Nomenclature for synthetic gene delivery systems. Hum. Gene Ther. 8:511-512 (1997).

    Google Scholar 

  4. S. C. De Smedt, J. Demeester, and W. E. Hennink. Cationic polymer based gene delivery systems. Pharm. Res. 17:113-126 (2000).

    Google Scholar 

  5. M. D. Brown, A. G. Schatzlein, and I. F. Uchegbu. Gene delivery with synthetic (non viral) carriers. Int. J. Pharm. 229:1-21 (2001).

    Google Scholar 

  6. S. Han, R. I. Mahato, Y. K. Sung, and S. W. Kim. Development of biomaterials for gene therapy. Mol Ther. 2:302-317 (2000).

    Google Scholar 

  7. E. Wagner, C. Plank, K. Zatloukal, M. Cotten, and M. L. Birnstiel. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc. Natl. Acad. Sci. USA 89:7934-7938 (1992).

    Google Scholar 

  8. S. M. Zou, P. Erbacher, J. S. Remy, and J. P. Behr. Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J. Gene Med. 2:128-134 (2000).

    Google Scholar 

  9. G. Y. Wu and C. H. Wu. Receptor-mediated gene delivery and expression in vivo. J. Biol. Chem. 262:14621-14624 (1988).

    Google Scholar 

  10. N. R. Chowdhury, C. H. Wu, G. Y. Wu, P. C. Yerneni, V. R. Bommineni, and J. R. Chowdhury. Fate of DNA targeted to the liver by asialoglycoprotein receptor-mediated endocytosis in vivo. Prolonged persistence in cytoplasmic vesicles after partial hepatectomy. J. Biol. Chem. 268:11265-11271 (1993).

    Google Scholar 

  11. G. Y. Wu, J. M. Wilson, F. Shalaby, M. Grossman, D. A. Shafritz, and C. H. Wu. Receptor-mediated gene delivery in vivo. Partial correction of genetic analbuminemia in Nagase rats. J. Biol. Chem. 266:14338-14342 (1991).

    Google Scholar 

  12. J. M. Wilson, M. Grossman, C. H. Wu, N. R. Chowdhury, G. Y. Wu, and J. R. Chowdhury. Hepatocyte-directed gene transfer in vivo leads to transient improvement of hypercholesterolemia in low density lipoprotein receptor-deficient rabbits. J. Biol. Chem. 267:963-967 (1992).

    Google Scholar 

  13. J. C. Perales, T. Ferkol, H. Beegen, O. D. Ratnoff, and R. W. Hanson. Gene transfer in vivo: sustained expression and regulation of genes introduced into the liver by receptor-targeted uptake. Proc. Natl. Acad. Sci. USA 91:4086-4090 (1994).

    Google Scholar 

  14. M. Nishikawa, M. Yamauchi, K. Morimoto, E. Ishida, Y. Takakura, and M. Hashida. Hepatocyte-targeted in vivo gene expression by intravenous injection of plasmid DNA complexed with synthetic multi-functional gene delivery system. Gene Ther. 7:548-555 (2000).

    Google Scholar 

  15. K. Morimoto, M. Nishikawa, S. Kawakami, T. Nakano, Y. Hattori, S. Fumoto, F. Yamashita, and M. Hashida. Molecular weight-dependent gene transfection activity of unmodified and galactosylated polyethyleneimine on hepatoma cells and mouse liver. Mol Ther. 7:254-261 (2003).

    Google Scholar 

  16. H. K. Nguyen, P. Lemieux, S. V. Vinogradov, C. L. Gebhart, N. Guérin, G. Paradis, T. K. Bronich, V. Y. Alakhov, and A. V. Kabanov. Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents. Gene Ther. 7:126-138 (2000).

    Google Scholar 

  17. T. Ferkol, J. C. Perales, E. Eckman, C. S. Kaetzel, R. W. Hanson, and P. B. Davis. Gene transfer into the airway epithelium of animals by targeting the polymeric immunoglobulin receptor. J. Clin. Invest. 95:493-502 (1995).

    Google Scholar 

  18. A. G. Ziady, T. Ferkol, D. V. Dawson, D. H. Perlmutter, and P. B. Davis. Chain length of the polylysine in receptor-targeted gene transfer complexes affects duration of reporter gene expression both in vitro and in vivo. J. Biol. Chem. 274:4908-4916 (1999).

    Google Scholar 

  19. D. Goula, N. Becker, G. F. Lemkine, P. Normandie, J. Rodrigues, S. Mantero, G. Levi, and B. A. Demeneix. Rapid crossing of the pulmonary endothelial barrier by polyethylenimine/DNA complexes. Gene Ther. 7:499-504 (2000).

    Google Scholar 

  20. L. Wightman, R. Kircheis, V. Rossler, S. Carotta, R. Ruzicka, M. Kursa, and E. Wagner. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med. 3:362-372 (2001).

    Google Scholar 

  21. P. Chollet, M. C. Favrot, A. Hurbin, and J. L. Coll. Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. J. Gene Med. 4:84-91 (2002).

    Google Scholar 

  22. A. Kichler, M. Chillon, C. Leborgne, O. Danos, and B. Frisch. Intranasal gene delivery with a polyethylenimine-PEG conjugate. J. Control Release 81:379-388 (2002).

    Google Scholar 

  23. C. Rudolph, J. Lausier, S. Naundorf, and R. H. Muller. and J. Rosenecker. In vivo gene delivery to the lung using polyethylenimine and fractured polyamidoamine dendrimers. J. Gene Med. 2:269-278 (2000).

    Google Scholar 

  24. A. Gautam, J. C. Waldrep, C. L. Densmore, N. Koshkina, S. Melton, L. Roberts, B. Gilbert, and V. Knight. Growth inhibition of established B16-F10 lung metastases by sequential aerosol delivery of p53 gene and 9-nitrocamptothecin. Gene Ther. 9:353-357 (2002).

    Google Scholar 

  25. J. L. Coll, P. Chollet, E. Brambilla, D. Desplanques, J. P. Behr, and M. Favrot. In vivo delivery to tumors of DNA complexed with linear polyethylenimine. Hum. Gene Ther. 10:1659-1666 (1999).

    Google Scholar 

  26. F. J. Verbaan, C. Oussoren, I. M. van Dam, Y. Takakura, M. Hashida, D. J. Crommelin, W. E. Hennink, and G. Storm. The fate of poly(2-dimethyl amino ethyl)methacrylate-based polyplexes after intravenous administration. Int. J. Pharm. 214:99-101 (2001).

    Google Scholar 

  27. C. Plank, K. Mechtler, F. J. Szoka, and E. Wagner. Activation of the complement system by synthetic DNA complexes: A potential barrier for intravenous gene delivery. Hum. Gene Ther. 7:1437-1446 (1996).

    Google Scholar 

  28. M. Ogris, S. Brunner, S. Schuller, R. Kircheis, and E. Wagner. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 6:595-605 (1999).

    Google Scholar 

  29. C. M. Ward, M. L. Read, and L. W. Seymour. Systemic circulation of poly(L-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy. Blood 97:2221-2229 (2001).

    Google Scholar 

  30. M. Kursa, G. F. Walker, V. Roessler, M. Ogris, W. Roedl, R. Kircheis, and E. Wagner. Novel Shielded Transferrin-Polyethylene Glycol-Polyethylenimine/DNA Complexes for Systemic Tumor-Targeted Gene Transfer. Bioconjug. Chem. 14:222-231 (2003).

    Google Scholar 

  31. R. Kircheis, L. Wightman, A. Schreiber, B. Robitza, V. Rossler, M. Kursa, and E. Wagner. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther. 8:28-40 (2001).

    Google Scholar 

  32. M. F. Wolschek, C. Thallinger, M. Kursa, V. Rossler, M. Allen, C. Lichtenberger, R. Kircheis, T. Lucas, M. Willheim, W. Reinisch, A. Gangl, E. Wagner, and B. Jansen. Specific systemic nonviral gene delivery to human hepatocellular carcinoma xenografts in SCID mice. Hepatology 36:1106-1114 (2002).

    Google Scholar 

  33. R. Kircheis, E. Ostermann, M. F. Wolschek, C. Lichtenberger, C. Magin-Lachmann, L. Wightman, M. Kursa, and E. Wagner. Tumor-targeted gene delivery of tumor necrosis factor-alpha induces tumor necrosis and tumor regression without systemic toxicity. Cancer Gene Ther. 9:673-680 (2002).

    Google Scholar 

  34. D. Fischer, T. Bieber, Y. Li, H. P. Elsasser, and T. Kissel. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 16:1273-1279 (1999).

    Google Scholar 

  35. T. Bettinger, R. C. Carlisle, M. L. Read, M. Ogris, and L. W. Seymour. Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Res. 29:3882-3891 (2001).

    Google Scholar 

  36. A. Aigner, D. Fischer, T. Merdan, C. Brus, T. Kissel, and F. Czubayko. Delivery of unmodified bioactive ribozymes by an RNA-stabilizing polyethylenimine (LMW-PEI) efficiently down-regulates gene expression. Gene Ther. 9:1700-1707 (2002).

    Google Scholar 

  37. G. F. Lemkine, D. Goula, N. Becker, L. Paleari, G. Levi, and B. A. Demeneix. Optimisation of polyethylenimine-based gene delivery to mouse brain. J. Drug Target. 7:305-312 (1999).

    Google Scholar 

  38. A. Boletta, A. Benigni, J. Lutz, G. Remuzzi, M. R. Soria, and L. Monaco. Nonviral gene delivery to the rat kidney with polyethylenimine. Hum. Gene Ther. 8:1243-1251 (1997).

    Google Scholar 

  39. A. Prokop, E. Kozlov, W. Moore, and J. M. Davidson. Maximizing the in vivo efficiency of gene transfer by means of nonviral polymeric gene delivery vehicles. J. Pharm. Sci. 91:67-76 (2002).

    Google Scholar 

  40. P. Lemieux, N. Guerin, G. Paradis, R. Proulx, L. Chistyakova, A. Kabanov, and V. Alakhov. A combination of poloxamers increases gene expression of plasmid DNA in skeletal muscle. Gene Ther. 7:986-991 (2000).

    Google Scholar 

  41. D. Putnam, C. A. Gentry, D. W. Pack, and R. Langer. Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc. Natl. Acad. Sci. USA 98:1200-1205 (2001).

    Google Scholar 

  42. M. Bello Roufai and P. Midoux. Histidylated polylysine as DNA vector: elevation of the imidazole protonation and reduced cellular uptake without change in the polyfection efficiency of serum stabilized negative polyplexes. Bioconjug. Chem. 12:92-99 (2001).

    Google Scholar 

  43. M. Thomas and A. M. Klibanov. Enhancing polyethylenimine's delivery of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. USA 99:14640-14645 (2002).

    Google Scholar 

  44. Y. B. Lim, S. O. Han, H. U. Kong, Y. Lee, J. S. Park, B. Jeong, and S. W. Kim. Biodegradable polyester, poly[alpha-(4-aminobutyl)-L-glycolic acid], as a non-toxic gene carrier. Pharm. Res. 17:811-816 (2000).

    Google Scholar 

  45. Y. Lim, Y. H. Choi, and J. Park. A self-destroying polycationic polymer: biodegradable poly(4-hydroxy-L-proline ester). J. Am. Chem. Soc. 121:5633-5639 (1999).

    Google Scholar 

  46. D. L. McKenzie, E. Smiley, K. Y. Kwok, and K. G. Rice. Low molecular weight disulfide cross-linking peptides as nonviral gene delivery carriers. Bioconjug. Chem. 11:901-909 (2000).

    Google Scholar 

  47. D. Oupicky, R. C. Carlisle, and L. W. Seymour. Triggered intracellular activation of disulfide crosslinked polyelectrolyte gene delivery complexes with extended systemic circulation in vivo. Gene Ther. 8:713-724 (2001).

    Google Scholar 

  48. M. A. Gosselin, W. Guo, and R. J. Lee. Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjug. Chem. 12:989-994 (2001).

    Google Scholar 

  49. Y. B. Lim, S. M. Kim, H. Suh, and J. S. Park. Biodegradable, endosome disruptive, and cationic network-type polymer as a highly efficient and nontoxic gene delivery carrier. Bioconjug. Chem. 13:952-957 (2002).

    Google Scholar 

  50. D. B. Rozema, K. Ekena, D. L. Lewis, A. G. Loomis, and J. A. Wolff. Endosomolysis by Masking of a Membrane-Active Agent (EMMA) for Cytoplasmic Release of Macromolecules. Bioconjug. Chem. 14:51-57 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, E. Strategies to Improve DNA Polyplexes for in Vivo Gene Transfer: Will “Artificial Viruses” Be the Answer?. Pharm Res 21, 8–14 (2004). https://doi.org/10.1023/B:PHAM.0000012146.04068.56

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000012146.04068.56

Navigation