Skip to main content

Advertisement

Log in

Pharmaceutical Prospects for RNA Interference

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

RNA interference has proven to be a powerful tool in gene function validation. Recently, the first studies were published reporting a disease-modulating activity of the technique, suggesting a promise for RNA interference as a novel therapeutic strategy. This review discusses the recent advancements in realizing the clinical utility of RNA-interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Couzin. Breakthrough of the year: Small RNAs make big splash. Science 298:2296-2297 (2002).

    Google Scholar 

  2. C. Cogoni and G. Macino. Post-transcriptional gene silencing across kingdoms. Curr. Opin. Genet. Dev. 10:638-643 (2000).

    Google Scholar 

  3. A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806-811 (1998).

    Google Scholar 

  4. R. H. Plasterk. RNA silencing: the genome's immune system. Science 296:1263-1265 (2002).

    Google Scholar 

  5. M. T. McManus and P. A. Sharp. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3:737-747 (2002).

    Google Scholar 

  6. G. J. Hannon. RNA interference. Nature 418:244-251 (2002).

    Google Scholar 

  7. S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494-498 (2001).

    Google Scholar 

  8. S. M. Elbashir, W. Lendeckel, and T. Tuschl. RNA interference is mediated by 21 and 22 nt RNAs. Genes Dev. 15:188-200 (2001).

    Google Scholar 

  9. M. Amarzguioui, T. Holen, E. Babaie, and H. Prydz. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 31:589-595 (2003).

    Google Scholar 

  10. M. Hamada, T. Ohtsuka, R. Kawaida, M. Koizumi, K. Morita, H. Furukawa, T. Imanishi, M. Miyagishi, and K. Taira. Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3′-ends of siRNAs. Antisense Nucleic Acid Drug Dev. 12:301-309 (2002).

    Google Scholar 

  11. T. Holen, M. Amarzguioui, M. T. Wiiger, E. Babaie, and H. Prydz. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res. 30:1757-1766 (2002).

    Google Scholar 

  12. L. Gitilin, S. Karelsky, and R. Andino. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418:430-434 (2002).

    Google Scholar 

  13. J. E. Garrus, U. K. von Schwedler, O. W. Pornillos, S. G. Morham, K. H. Zavitz, H. E. Wang, D. A. Wettstein, K. M. Stray, M. Cote, and R. L. Rich. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107:55-65 (2001).

    Google Scholar 

  14. J. T. Chi, H. Y. Chang, N. N. Wang, D. S. Chang, N. Dunphy, and P. O. Brown. Genomewide view of gene silencing by small interfering RNAs. Proc. Natl. Acad. Sci. USA 100:6343-6346 (2003).

    Google Scholar 

  15. D. Semizarov, L. Frost, A. Sarthy, P. Kroeger, D. N. Halbert, and S. W. Fesik. Specificity of short interfering RNA determined through gene expression signatures. Proc. Natl. Acad. Sci. USA 100:6347-6352 (2003).

    Google Scholar 

  16. A. L. Jackson, S. R. Bartz, J. Schelter, S. V. Kobayashi, J. Burchard, M. Mao, B. Li, G. Cavet, and P. S. Linsley. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21:635-637 (2003).

    Google Scholar 

  17. R. Micura. Small interfering RNAs and their chemical synthesis. Angew Chem Int Ed Engl. 41:2265-2269 (2002).

    Google Scholar 

  18. Y. Shi. Mammalian RNAi for the masses. Trends Genet. 19:9-12 (2003).

    Google Scholar 

  19. J. Y. Yu, S. L. DeRuiter, and D. L. Turner. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 99:6047-6052 (2002).

    Google Scholar 

  20. C. P. Paul, P. D. Good, I. Winer, and D. R. Engelke. Effective expression of small interfering RNA in human cells. Nature Biotechnol. 20:505-508 (2002).

    Google Scholar 

  21. M. Miyagishi and K. Taira. U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol. 20:497-500 (2002).

    Google Scholar 

  22. T. R. Brummelkamp, R. Bernards, and R. Agami. A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550-553 (2002).

    Google Scholar 

  23. E. Devroe and P. A. Silver. Retrovirus-delivered siRNA. BMC Biotechnol 2:15(2002).

    Google Scholar 

  24. S. M. Elbashir, J. Harborth, K. Weber, and T. Tuschl. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26:199-213 (2002).

    Google Scholar 

  25. T. Golden, N. M. Dean, and R. E. Honkanen. Use of antisense oligonucleotides: advantages, controls, and cardiovascular tissue. Microcirculation 9:51-64 (2002).

    Google Scholar 

  26. S. A. Audouy, L. F. de Leij, D. Hoekstra, and G. Molema. In vivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm. Res. 19:1599-1605 (2002).

    Google Scholar 

  27. T. Merdan, J. Kopecek, and T. Kissel. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv. Drug Deliv. Rev. 54:715-758 (2002).

    Google Scholar 

  28. T. Niidome and L. Huang. Gene therapy progress and prospects: nonviral vectors. Gene Ther. 9:1647-1652 (2002).

    Google Scholar 

  29. C. P. Paul, P. D. Good, S. X. Li, A. Kleihauer, J. J. Rossi, and D. R. Engelke. Localized expression of small RNA inhibitors in human cells. Mol. Ther. 7:237-247 (2003).

    Google Scholar 

  30. Y. Zeng and B. R. Cullen. RNA interference in human cells is restricted to the cytoplasm. RNA 8:855-860 (2002).

    Google Scholar 

  31. M. T. Lotze and T. A. Kost. Viruses as gene delivery vectors: application to gene function, target validation, and assay development. Cancer Gene Ther. 9:692-699 (2002).

    Google Scholar 

  32. L. A. Martinez, I. Naguibneva, H. Lehrmann, A. Vervisch, T. Tchenio, G. Lozano, and A. Harel-Bellan. Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc. Natl. Acad. Sci. USA 99:14849-14854 (2002).

    Google Scholar 

  33. J. Capodici, K. Kariko, and D. Weissman. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J. Immunol. 169:5196-5201 (2002).

    Google Scholar 

  34. G. Randall, A. Grakoui, and C. M. Rice. Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc. Natl. Acad. Sci. USA 100:235-240 (2003).

    Google Scholar 

  35. Q. Ge, M. T. McManus, T. Nguyen, C. H. Shen, P. A. Sharp, H. N. Eisen, and J. Chen. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. USA 100:2718-2723 (2003).

    Google Scholar 

  36. H. Hasuwa, K. Kaseda, T. Einarsdottir, and M. Okabe. Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett. 532:227-230 (2002).

    Google Scholar 

  37. P. Stein, P. Svoboda, and R. M. Schultz. Transgenic RNAi in mouse oocytes: a simple and fast approach to study gene function. Dev. Biol. 256:188-194 (2003).

    Google Scholar 

  38. M. A. Carmell, L. Zhang, D. S. Conklin, G. J. Hannon, and T. A. Rosenquist. Germline transmission of RNAi in mice. Nat. Struct. Biol. 10:91-92 (2003).

    Google Scholar 

  39. G. Tiscornia, O. Singer, M. Ikawa, and I. M. Verma. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl. Acad. Sci. USA 100:1844-1848 (2003).

    Google Scholar 

  40. D. A. Rubinson, C. P. Dillon, A. V. Kwiatkowski, C. Sievers, L. Yang, J. Kopinja, M. Zhang, M. T. McManus, F. B. Gertler, M. L. Scott, and L. Van Parijs. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33:401-406 (2003).

    Google Scholar 

  41. J. R. Bertrand, M. Pottier, A. Vekris, P. Opolon, A. Maksimenko, and C. Malvy. Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem. Biophys. Res. Commun. 296:1000-1004 (2002).

    Google Scholar 

  42. G. Zhang, V. Budker, and J. A. Wolff. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum. Gene Ther. 10:1735-1737 (1999).

    Google Scholar 

  43. D. L. Lewis, J. E. Hagstrom, A. G. Loomis, J. A. Wolff, and H. Herweijer. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat. Genet. 32:107-108 (2002).

    Google Scholar 

  44. A. P. McCaffrey, L. Meuse, T. T. Pham, D. S. Conklin, G. J. Hannon, and M. A. Kay. RNA interference in adult mice. Nature 418:38-39 (2002).

    Google Scholar 

  45. E. Song, S. K. Lee, J. Wang, N. Ince, N. Ouyang, J. Min, J. Chen, P. Shankar, and J. Lieberman. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med. 9:347-351 (2003).

    Google Scholar 

  46. L. Zender, S. Hutker, C. Liedtke, H. L. Tillmann, S. Zender, B. Mundt, M. Waltemathe, T. Gosling, P. Flemming, N. P. Malek, C. Trautwein, M. P. Manns, F. Kuhnel, and S. Kubicka. Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc. Natl. Acad. Sci. USA 100:7797-7802 (2003).

    Google Scholar 

  47. H. Xia, Q. Mao, H. L. Paulson, and B. L. Davidson. siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol. 20:1006-1010 (2002).

    Google Scholar 

  48. S. J. Reich, J. Fosnot, A. Kuroki, W. Tang, X. Yang, A. M. Maguire, J. Bennett, and M. J. Tolentino. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol. Vis. 9:210-216 (2003).

    Google Scholar 

  49. D. R. Sorensen, M. Leirdal, and M. Sioud. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J. Mol. Biol. 327:761-766 (2003).

    Google Scholar 

  50. S. Filleur, A. Courtin, S. Ait-Si-Ali, J. Guglielmi, C. Merle, A. Harel-Bellan, P. Clézardin, and F. Cabon. SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res. 63:3919-3922 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond M. Schiffelers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiffelers, R.M., Woodle, M.C. & Scaria, P. Pharmaceutical Prospects for RNA Interference. Pharm Res 21, 1–7 (2004). https://doi.org/10.1023/B:PHAM.0000012145.49054.6c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000012145.49054.6c

Navigation