Skip to main content
Log in

A Physiologic Model for Simulating Gastrointestinal Flow and Drug Absorption in Rats

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The development of a physiologically based absorption model for orally administered drugs in rats is described.

Methods. Unlike other models that use a multicompartmental approach, the GI tract is modeled as a continuous tube with spatially varying properties. The mass transport through the intestinal lumen is described via an intestinal transit function. The only substance-specific input parameters of the model are the intestinal permeability coefficient and the solubility in the intestinal fluid. With this physiologic and physicochemical information, the complete temporal and spatial absorption profile can be calculated.

Results. A first performance test using portal concentration data published in the literature yielded an excellent agreement between measured and simulated temporal absorption profiles in the portal vein. Furthermore, the dose dependence of a compound with solubility-limited fraction dose absorbed in rats (chlorothiazide) could be adequately described by the model.

Conclusions. The continuous absorption model is well suited to simulate drug flow and absorption in the GI tract of rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Prentis, Y. Lis, and S. R. Walker. Pharmaceutical innovation by the seven U.K.owned pharmaceutical companies (1964–1985). Br. J. Clin. Pharmacol. 25:387-396 (1988).

    Google Scholar 

  2. S. Venkatesh and R. A. Lipper. Role of the development scientist in compound lead selection and optimization. J. Pharm. Sci. 89:145-154 (2000).

    Google Scholar 

  3. M. Bajpai and K. K. Adkinson. High throughput screening for lead optimization: a rational approach. Curr. Opin. Drug Discov. Dev. 3:63-71 (2000).

    Google Scholar 

  4. P. Poulin and F.P. Theil. A priori prediction of tissue:plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J. Pharm. Sci. 89:16-35 (2000).

    Google Scholar 

  5. D. A. Norris, G. D. Leesman, P. J. Sinko, and G. M. Grass. Development of predictive pharmacokinetic simulation models for drug discovery. J. Control. Rel. 65:55-62 (2000).

    Google Scholar 

  6. T. Lave, O. Luttringer, J. Zuegge, G. Schneider, P. Coassolo, and F.P. Theil. Prediction of human pharmacokinetics based on preclinical in vitro and in vivo data. Ernst Schering Res. Found. Workshop 37:81-104 (2002).

    Google Scholar 

  7. G. M. Grass and P. J. Sinko. Physiologically-based pharmacokinetic simulation modelling. Adv. Drug Deliv. Rev. 54:433-451 (2002).

    Google Scholar 

  8. G. M. Grass. Simulation models to predict oral drug absorption from in vitro data. Adv. Drug Deliv. Rev. 23:199-219 (1997).

    Google Scholar 

  9. L. X. Yu. An integrated model for determining causes of poor oral drug absorption. Pharm. Res. 16:1883-1887 (1999).

    Google Scholar 

  10. Y. Plusquellec, C. Efthymiopoulos, P. Duthil, and G. Houin. A pharmacokinetic model for multiple sites discontinuous gastrointestinal absorption. Med. Eng. Phys. 21:525-532 (1999).

    Google Scholar 

  11. L. X. Yu and G. L. Amidon. A compartmental absorption and transit model for estimating oral drug absorption. Int. J. Pharm. 186:119-125 (1999).

    Google Scholar 

  12. B. Agoram, W. S. Woltosz, and M. B. Bolger. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv. Drug Del. Rev. 50:41-67 (2001).

    Google Scholar 

  13. http://www.lionbioscience.com/solutions/products/idea-

  14. http://www.simulations-plus.com/products/gastro_plus.html-

  15. R. Hebel and M. W. Stromberg. Anatomy of the Laboratory Rat, Lippincott Williams & Wilkins, Baltimore, 1976.

    Google Scholar 

  16. R. B. Fischer and D. S. Parsons. The gradient of mucosal surface area in the small intestine of the rat. J. Anat. 84:272-282 (1957).

    Google Scholar 

  17. L. Poulakos and T. H. Kent. Gastric emptying and small intestinal propulsion in fed and fasted rats. Gastroenterology 64:962-967 (1973).

    Google Scholar 

  18. T. T. Kararli. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos. 16:351-380 (1995).

    Google Scholar 

  19. T. Sawamoto, S. Haruta, Y. Kurosaki, K. Higaki, and T. Kimura. Prediction of the plasma concentration profiles of orally administered drugs in rats on the basis of gastrointestinal transit kinetics and absorbability. J. Pharm. Pharmacol. 49:450-457 (1997).

    Google Scholar 

  20. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C—The Art of Scientific Computing, 2nd ed. Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  21. T. Moriwaki, H. Yasui, Y. Shigemoto, and N. H. Yoshida. A recirculatory model for local absorption and disposition of ciprofloxacin by measuring portal and systemic blood concentration difference. J. Pharm. Sci. 91:196-205 (2002).

    Google Scholar 

  22. Y. Fujieda, K. Yamaoka, T. Ito, and T. Nakagawa. Local absorption kinetics of levofloxacin from intestinal tract into portal vein in conscious rat using portal-venous concentration difference. Pharm. Res. 13:1201-1204 (1996).

    Google Scholar 

  23. K. Tabata, K. Yamaoka, T. Fukuyama, and T. Nakagawa. Local absorption kinetics into the portal system using the portal-venous concentration difference after an oral dose of diclofenac in the awakening rat. Drug. Metab. Disp. 24:216-220 (1996).

    Google Scholar 

  24. S. Ueda, K. Yamaoka, and T. Nakagawa. Effect of pentobarbital anesthesia on intestinal absorption and hepatic first-pass metabolism of oxacillin evaluated by the portal-systemic concentration difference, www.pharm.kyoto-u.ac.jp/ueda-

  25. F.H. Hsu, T. Prueksaritanont, M. G. Lee, and W. L. Chiou. The Phenomenon and Cause of the Dose-Dependent Oral Absorption of Chlorothiazide in Rats: Extrapolation to Human Data Based on the Body Surface Area Concept. J. Pharmacokin. Biopharm. 15:369-386 (1987).

    Google Scholar 

  26. Syracuse Research Corporation. PHYSPROP—The Physical Properties Database, http://esc.syrres.com/interkow/PhysProp.htm-

  27. A. Frick, H. Möller, and E. Wirbitzki. Biopharmaceutical characterization of oral immediate release drug products. In vitro/in vivo comparison of phenoxymethylpenicillin potassium, glimepiride and levofloxacin. Eur. J. Pharm. Biopharm. 46:305-311 (1998).

    Google Scholar 

  28. J. B. Dressman, D. Fleisher, and G. L. Amidon. Physicochemical model for dose-dependent drug absorption. J. Pharm. Sci. 73:1274-1279 (1984).

    Google Scholar 

  29. W. L. Chiou, C. Ma, S. M. Chung, T. C. Wu, and H. Y. Jeong. Similarity in the linear and non-linear oral absorption of drugs between human and rat. Int. J. Clin. Pharmacol. Ther. 38:532-539 (2000).

    Google Scholar 

  30. V. D. Makhey, A. Guo, D. A. Norris, P. Hu, J. Yan, and P. J. Sinko. Characterization of the regional intestinal kinetics of drug efflux in rat and human intestine and in Caco-2 cells. Pharm. Res. 15:1160-1167 (1989).

    Google Scholar 

  31. P. S. Burton, J. T. Goodwin, T. J. Vidmar, and B. M. Amore. Predicting drug absorption: how nature made it a difficult problem. J. Pharmacol. Exp. Ther. 303:89-95 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Willmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willmann, S., Schmitt, W., Keldenich, J. et al. A Physiologic Model for Simulating Gastrointestinal Flow and Drug Absorption in Rats. Pharm Res 20, 1766–1771 (2003). https://doi.org/10.1023/B:PHAM.0000003373.72652.c0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000003373.72652.c0

Navigation