Skip to main content
Log in

Effects of Minor Elements on the Cyclic-Oxidation Behavior of Commercial Fe-Base 800-Series Alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The cyclic-oxidation behavior of commercial iron-base 800-series chromia-scale-forming alloys was studied at 1000°C in still air. Each thermal cycle consisted of one day at temperature followed by air cooling to room temperature. Two different types of 800-series alloys were studied (800 and 800HT), with each type being supplied by two different producers. Although the alloys were of similar chemical composition, their variations in minor-constituent contents were apparently sufficiently different to cause marked differences in oxidation behavior. Compared to the 800 alloys, the higher-strength 800HT alloys generally performed the worst, undergoing rapid weight-loss kinetics after an initial period of relatively protective oxidation. The time required for the commencement of rapid weight-loss kinetics depended significantly on the producer of the 800HT alloy. In general, however, the 800HT alloys developed protrusion of Ti- and Cr-rich oxides into the alloy along the alloy/scale interface, which promoted spallation and poorer cyclic-oxidation resistance. The formation of Si-rich oxide particles in the vicinity of the alloy/scale interface could improve cyclic-oxidation resistance; however, higher Si contents would cause internal Si-rich oxide formation and promote the formation of Ti- and Cr-rich oxide protrusions at the alloy/scale interface. Good cyclic-oxidation resistance requires optimization of the minor-element constituents, Si, Ti, and Al in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. A. Cordovi, in A Status Review of Alloy 800, S. F. Pugh, ed. (Oxfordshire: AERE Harwell, The British Nuclear Energy Society, 1975), p. 2.

    Google Scholar 

  2. G. Y. Lai, High-Temperature Corrosion of Engineering Alloys, (ASM International, 1990), p. 29.

  3. H. Hindam and D. P. Whittle, Oxidation of Metals, 18, 245 (1982).

    Google Scholar 

  4. B. Gleeson and M. A. Harper, Oxidation of Metals, 49, 373 (1998).

    Article  Google Scholar 

  5. J. H. Chen, P. M. Rogers, and J. A. Little, Materials Science Forum, 57, 251–254 (1997).

    Google Scholar 

  6. D. Caplan and M. Cohen, Journal of the Electrochemical Society, 112, 471 (1965).

    Google Scholar 

  7. H. E. Evans, D. A. Hilton, R. A. Holm, S. J. Webster, Oxidation of Metals, 19, 19 (1983).

    Google Scholar 

  8. F. H. Stott, G. J. Gabriel, F. I. Wei, and G. C. Wood, Werkstoffe und Korrosion, 38, 521 (1987).

    Google Scholar 

  9. F. H. Stott, F. I. Wei, and C. A. Enahoro, Werkstoffe und Korrosion 40, 198 (1989).

    Google Scholar 

  10. F. H. Stott, Materials Characterization 28, 311 (1992).

    Article  Google Scholar 

  11. G. C. Wood, F. H. Stott, Materials Science Technology 3, 519 (1987).

    Google Scholar 

  12. M. A. Harper, and L. R. Walker, Corrosion 2001, NACE, 01154, 2001.

  13. S. Leistikow, in A Status Review of Alloy 800 S. F. Pugh, ed. (Oxfordshire: AERE Harwell, The British Nuclear Energy Society, 1975), p. 102.

    Google Scholar 

  14. F. Delaunay, C. Berthier, D. Galy, J. M. Lameille, and M. Lenglet, Microscopy of Oxidation-3, (The Institute of Materials, London, 1997), p. 587.

    Google Scholar 

  15. M. A. Harper, and B. Gleeson, Cyclic-Oxidation of High Temperature Materials, EFC Publications, NO. 27, 273 (1999).

    Google Scholar 

  16. H. J. Yearian, H. E. Boren, and R. E. Warr, Corrosion, 12, 561 (1956).

    Google Scholar 

  17. M. D. Merz, Metallurgical Transactions A, 11, 71 (1980).

    Google Scholar 

  18. M. A. Dayananda, and C. W. Kim, Metallurgical Transactions A, 10, 1333 (1979).

    Google Scholar 

  19. M. A. Dayananda, Metallurgical Transactions A, 14, 1851 (1983).

    Google Scholar 

  20. C. Wagner, Journal of the Electrochemical Society, 99, 369 (1952).

    Google Scholar 

  21. K. P. Lillerud, and P. Kofstad, in High Temperature Corrosion, R. A. Rapp, ed. (NACE, Houston, TX, 1983).

    Google Scholar 

  22. M. P. Brady, D. T. Hoelzer, E. A. Payzant, P. F. Tortorelli, J. A. Horton, I. M. Anderson, L. R. Walker, and S. K. Wrobel, Journal of Materials Research, 16, 2784 (2001).

    Google Scholar 

  23. U. Krupp, and H.-J. Christ, Metallurgical and Materials Transactions A, 31, 47 (2000).

    Google Scholar 

  24. K. S. Chan, Metallurgical and Materials Transactions A 28, 411 (1997).

    Google Scholar 

  25. H. E. Evans, International Materials Reviews, 40, 1 (1995).

    Google Scholar 

  26. C. O. Moon, and S. B. Lee, Oxidation of Metals, 39, 1 (1993).

    Google Scholar 

  27. R. C. Lobb, J. A. Sasse, and H. E. Evans, Materials Science and Technology, 5, 828 (1989).

    Google Scholar 

  28. K. Kusabiraki, and Y. Nakao, in High-Temperature Corrosion and Protection 2000, Toshio Narita et al. eds., (Hokkaido, Japan, 2000), p. 105.

    Google Scholar 

  29. J. Litz, A. Rahmel, M. Schorr, and J. Weiss, Oxidation of Metals, 32, 167 (1989).

    Google Scholar 

  30. J. H. Chen, P. M. Rogers, and J. A. Little, Oxidation of Metals, 47, 381 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gleeson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Gleeson, B. Effects of Minor Elements on the Cyclic-Oxidation Behavior of Commercial Fe-Base 800-Series Alloys. Oxidation of Metals 62, 45–69 (2004). https://doi.org/10.1023/B:OXID.0000038785.16792.3d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:OXID.0000038785.16792.3d

Navigation