Skip to main content
Log in

Oxidation of SiOC/MoSi2/SiC Composites Prepared by Polymer Pyrolysis

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

From the pre-ceramic polymer of polymethylsiloxane (PMS) and powders of MoSi2, SiC and Si, new ceramic composites that consisted primarily of an amorphous SiOC matrix containing dispersed particles of MoSi2 and SiC were synthesized. The composites displayed superior oxidation resistance at both high and low temperatures by forming SiO2 on the surface. The thin, amorphous SiO2 layer that formed initially gradually to crystallized during oxidation between 1000 and 1300°C. An outer highly porous and an inner superficial SiO2 layer that formed from the initial stage of oxidation between 400 and 500°C protected the composites from pesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yajima, J. Hayashi, M. Omori, and K. Okmura, Nature 262, 683 (1976).

    Google Scholar 

  2. R. W. Rice, American Ceramic Society Bulletin 62, 889(1983).

    Google Scholar 

  3. A. Kaindl, W. Lehner, P. Greil, and D. J. Kim, Materials Science and Engineering 260A, 101(1999).

    Google Scholar 

  4. P. Greil, Journal of American Ceramics Society 78, 835(1995).

    Google Scholar 

  5. C. Müller, P. Greil, K. Bundschuh, and M. Schütze, Ceramic Transactions 85, 393(1998).

    Google Scholar 

  6. J. Cook, A. Khan, E. Lee, and R. Mahapatra, Materials Science and Engineering A155, 183(1992).

    Google Scholar 

  7. P. J. Meschter, Metallurgical Transactions 23A, 1763(1992).

    Google Scholar 

  8. D. A. Berztiss, R. R. Cerchiara, E. A. Gulbransen, F. S. Pettit, and G. H. Meier, Materials Science and Engineering 155A, 165(1992).

    Google Scholar 

  9. S. Melsheimer, M. Fietzek, V. Kolarik, A. Rahmel, and M. Schütze, Oxidation of Metals 47, 139(1997).

    Google Scholar 

  10. K. Yanagihara, K. Przybylski, and T. Maruyama, Oxidation of Metals 47, 277(1997).

    Google Scholar 

  11. J. Chen, C. Li, Z. Fu, X. Tu, M. Sundberg, and R. Pompe, Materials Science and Engineering 261A, 239(1999).

    Google Scholar 

  12. K. Kurokawa, H. Houzumi, I. Saeki, and H. Takahashi, Materials Science and Engineering 261A, 292(1999).

    Google Scholar 

  13. Y. Q. Liu, G. Shao, and P. Tsakiropoulos, Intermetallics 9, 125(2001).

    Google Scholar 

  14. T. Narushima, T. Goto, T. Hirai, and Y. Iguchi, Material Transactions, JIM 38, 821(1997).

    Google Scholar 

  15. E. W. Lee, J. Cook, A. Khan, R. Mahapatra, and J. Waldman, Journal of Metals 43(3), 54(1991).

    Google Scholar 

  16. J. B. Berkowitz-Mattuck, and R. R. Dils, Journal of Electrochemical Society 112, 583(1965).

    Google Scholar 

  17. J. B. Berkowitz-Mattuck, P. E. Blackburn, and E. J. Felton, Transactions TMS-AIME 233, 1093(1965).

    Google Scholar 

  18. J. B. Berkowitz-Mattuck, M. Rosetti, and D. W. Lee, Metallurgical Transactions 1, 479(1970).

    Google Scholar 

  19. T. Maruyama and K. Yanagihara, Materials Science and Engineering 239/240A, 828(1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.B., Kim, D.J. Oxidation of SiOC/MoSi2/SiC Composites Prepared by Polymer Pyrolysis. Oxidation of Metals 61, 423–437 (2004). https://doi.org/10.1023/B:OXID.0000032332.27318.9b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:OXID.0000032332.27318.9b

Navigation