Skip to main content
Log in

Oxidation Behavior of a TiAl–Al2Ti4C2–TiC–Al2O3 in situ Composite

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A TiAl–Al2Ti4C2–TiC–Al2O3 in situ composite was fabricated using TiO2, Al, and C as starting materials through a mechanical-milling and subsequently a pressureless-sintering process. Discontinuous and cyclic-oxidation tests were then carried out at 800 and 900° C in air up to 500 hr or 1000 cycles to evaluate its oxidation and oxide-scale-spallation resistance. The present results demonstrated that this composite had extremely high oxidation resistance in comparison with a Ti–48Al–2Cr alloy. The oxidation mass gains measured on the composite were about two orders of magnitude lower than that of the alloy. Moreover, the oxide on this composite showed superior spallation resistance; scale cracking or spalling could never be detected, while the alloy samples suffered severe scale cracking and spallation. Based on the morphological and cross-sectional observations, it is believed that α-Al2O3 and Al2Ti4C2 formed and incorporated in the composite could significantly influence the scaling behavior and then improve oxidation and spallation resistance of this composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Uenishi and K. F. Kobayashi, Intermetallics 4, S95(1996).

    Google Scholar 

  2. E. A. Loria, Intermetallics 8, 1339(2000).

    Google Scholar 

  3. F. Appel, U. Brossmann, U. Christoph, S. Eggert, P. Janschek, U. Lorenz, J. Müllauer, M. Oehring and J. D. H. Paul, Advanced Engineering Materials 2, 699(2000).

    Google Scholar 

  4. A. K. Gogia, T. K. Nandy, D. Banerjee, T. Carisey, J. L. Strudel, and J. M. Francher, Intermetallics 6, 741(1998).

    Google Scholar 

  5. J. S. Wu, L. T. Zhang, F. Wang, K. Jiang, and G. H. Qiu, Intermetallics 8, 19(2000).

    Google Scholar 

  6. T. Kawabata, H. Fukai, and O. Izump, Acta Materialia 46, 2185(1998).

    Google Scholar 

  7. S. C. Huang and J. C. Chesnutt, inIntermetallic Compounds, J. H. Westbrook and R. L. Fleischer, eds. (John Wiley & Sons, Chichester, 1995). Vol. 2.

    Google Scholar 

  8. G. Welsch and P. D. Desal, Oxidation and Corrosion of Intermetallic Alloys (Purdue University, Indiana, 1996).

    Google Scholar 

  9. H. Mabuchi, H. Tsuda, T. Kawakami, S. Nakamatsu, T. Matsui, and K. Morii, Scripta Materialia 41, 511(1999).

    Google Scholar 

  10. V. A. C. Haanappel and M. F. Stroosnijder, Surface and Coatings Technology 105, 147(1998).

    Google Scholar 

  11. M. P. Brady, W. J. Brindley, J. L. Smialek, and I. E. Locei, Journals of Metals 48, 46(1996).

    Google Scholar 

  12. C.M. Ward-Close, R. Minor, and P. J. Doorbar, Intermetallics 4, 217(1996).

    Google Scholar 

  13. S. Ranganath, Journal of Materials Science 32, 1(1997).

    Google Scholar 

  14. J. S. Fish and D. J. Duquette, Journal of de Physique iv 3, 411(1993).

    Google Scholar 

  15. D. B. Lee, J. H. Park, Y. H. Park, and Y. J. Kim, Materials Transactions JIM 38 306(1997).

    Google Scholar 

  16. D. B. Lee, M. H. Kim, C. W. Yang, S. H. Lee, M. H. Yang, and Y. J. Kim, Oxidation of Metal 56, 215(2001).

    Google Scholar 

  17. Z. W. Li, W. Gao, J. Liang, and D. L. Zhang, Materials Letters 57, 1970(2003).

    Google Scholar 

  18. Z. W. Li, W. Gao, J. Liang, and D. L. Zhang, International Journal of Modern Physics B 17, 1770(2003).

    Google Scholar 

  19. S. P. Gaus, M. P. Haemer, H. M. Chan, H. S. Caram, J. Bruhn, and N. Claussen, Journal of the American Ceramic Society 83, 1606(2000).

    Google Scholar 

  20. D. L. Zhang, Z. H. Cai, and M. Newby, Materials Technology and Advanced Materials 18, 94(2003).

    Google Scholar 

  21. W. Gao, Z. W. Li, and D. L. Zhang, Oxidation Metal 57, 99(2002).

    Google Scholar 

  22. Z. W. Li, W. Gao, D. Y. Ying, and D. L. Zhang, Scripta Materialia 48, 1649(2003).

    Google Scholar 

  23. D. L. Zhang and Z. H. Cai, Materials Science Forum 437–438, 297(2003).

    Google Scholar 

  24. Z.W. Li, W. Gao, D.L. Zhang, and Z. H. Cai, in press.

  25. R. W. Stewart and I. B. Cutler, Journal American Ceramic Society 50, 176(1967).

    Google Scholar 

  26. X. H. Wang and Y. C. Zhou, Oxidation Metal 59, 303(2003).

    Google Scholar 

  27. X. H. Wang and Y. C. Zhou, Corrosion Science 45, 891(2003).

    Google Scholar 

  28. Y.C. Zhou and Z. M. Sun, Physical Review B 61, 12570(2000).

    Google Scholar 

  29. M. Zhou, Y. Makino, M. Nose, and K. Nogi, Thin Solid Films 339, 203(1999).

    Google Scholar 

  30. Y. D. He, Z. W. Li, H. B. Qi, and W. Gao, Materials Research Innovations 1, 157(1997).

    Google Scholar 

  31. Y. D. He and F. H. Stott, Corrosion Science 36, 1869(1994).

    Google Scholar 

  32. E. H. Copland, B. Gleeson, and D. J. Young, Acta Materials 47, 2937(1999).

    Google Scholar 

  33. S. Shimada and F. Yunazar, Journal of American Ceramic Society 83, 721(2000).

    Google Scholar 

  34. H. E. Evans, International Material Review 40, 1(1995).

    Google Scholar 

  35. T. Saito, Advanced Performance Materials 2, 121(1995).

    Google Scholar 

  36. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, London and New York, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Gao, W., Zhang, D.L. et al. Oxidation Behavior of a TiAl–Al2Ti4C2–TiC–Al2O3 in situ Composite. Oxidation of Metals 61, 339–354 (2004). https://doi.org/10.1023/B:OXID.0000025339.82182.98

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:OXID.0000025339.82182.98

Navigation