Skip to main content
Log in

Thermodynamic Roles of Metallic Elements in Carburization and Metal Dusting

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This paper addresses the thermodynamic aspects of metallic elements (typically Fe, Ni, and Cr) in carburization and metal-dusting processes in CH4–H2, CO–CO2, and CO–H2O–H2 carburizing gas mixtures, and their possible contributions to understanding of carburization and metal-dusting phenomena. Carburization requires \(a_C \left( {gas} \right) > a_C \left( {M_Z C/M} \right) \cdot a_C \left( {M_Z C/M} \right)\) is solely temperature-dependent, while aC (gas) is dependent not only on temperature but also on gas chemistry and total pressure. In general, metallic elements tend to be carburized at higher temperatures in CH4–H2, but at lower temperatures in CO–CO2 and CO–H2O–H2 carburizing gas mixtures. For metal dusting to occur, \(a_C \left( {M_Z C/M} \right)\)(gas)> 1 (first-type) and \(a_C \left( {gas} \right) > a_C \left( {M_Z C/M} \right)\); 1 (second-type) should be satisfied. Possible regimes for first- and second-type metal dusting are discussed for pure Fe and Ni, and the range for first-type metal dusting of Ni is considerably broader than that for Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Grabke, Carburization—A High Temperature Corrosion Phenomenon, Chapter one, Part I (Materials Technology Institute, 1998).

  2. R. F. Hochman, Proceedings of the 4th International Congress on Metal Corrosion, N.E. Hammer, ed.(NACE, Houston, 1972), pp. 258–263.

  3. H. J. Grabke and I. Wolf, Materials Science Engineering 87, 23-33 (1987).

    Google Scholar 

  4. A. Rahmel, H. J. Grabke, and W. Steinkusch, Materials Corrosion 49, 221-225 (1998).

    Google Scholar 

  5. H. J. Grabke, R. Krajak, and J. C. Nava Paz, Corrosion Science 35, 1141-1150 (1993).

    Google Scholar 

  6. J. C. Nava Paz and H. J. Grabke, Oxidation of Metals 39, 437-456 (1993).

    Google Scholar 

  7. E. Pippel, J. Woltersdorf, H. J. Grabke, and S. Strauß, Steel Research 66, 217-221 (1995).

    Google Scholar 

  8. E. Pippel, J. Woltersdorf, and R. Schneider, Materials Corrosion 49 309-316 (1998).

    Google Scholar 

  9. R. Schneider, E. Pippel, J. Woltersdorf, S. Strauß, and H. J. Grabke, Steel Research 68, 326-332 (1997).

    Google Scholar 

  10. C. M. Chun, J. D. Mumford, and T. A. Ramanarayanan, Journal of Electrochemical Society 147, 3680-3686 (2000).

    Google Scholar 

  11. C. M. Chun, J. D. Mumford, and T. A. Ramanarayanan, Journal of Electrochemical Society 149, B348-B355 (2002).

    Google Scholar 

  12. C. M. Chun, T. A. Ramanarayanan, and J. D. Mumford, Materials Corrosion 50, 634-639 (1999).

    Google Scholar 

  13. R. Yin, Oxidation of Metals 60, 103-116 (2003).

    Google Scholar 

  14. O. Kubaschewski and C. B. Alcock, Metallurgical Thermo-chemistry, 5th ed. (Pergamon Press Ltd, 1979).

  15. S. R. Shatynski, Oxidation of Metals 13, 105-118 (1979).

    Google Scholar 

  16. JANAF Thermodynamic Data (Dow Chemical Co., Midland, Mich., 1960–1961).

  17. M. Maier, J. F. Norton, and P. D. Frampton, Materials Corrosion 49, 330-335 (1998).

    Google Scholar 

  18. T. P. Levi, N. Briggs, I. Minchington, and C. W. Thomas Paper 01375, NACE, Corrosion, 2001.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, R. Thermodynamic Roles of Metallic Elements in Carburization and Metal Dusting. Oxidation of Metals 61, 323–337 (2004). https://doi.org/10.1023/B:OXID.0000025338.74215.31

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:OXID.0000025338.74215.31

Navigation