Skip to main content
Log in

Thermal Conductivity, Phase Stability, and Oxidation Resistance of Y3Al5O12 (YAG)/Y2O3–ZrO2 (YSZ) Thermal-Barrier Coatings

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This paper describes a new multilayer TBC that incorporates a 10 μm-thick oxygen barrier layer of yttrium–aluminum garnet (YAG) into a typical YSZ TBC system. The thermal conductivity of as-sprayed YAG/YSZ coatings was reduced due to excessive porosity and amorphous areas in the YAG layer. After long-term heat treatments, the conductivity of the multilayer was unaffected by the presence of YAG. Sintering and recrystallization of the amorphous YAG regions occurred during high-temperature heat treatments. While YAG itself possesses excellent phase stability, its presence also improved the phase stability of zirconia near the YAG/YSZ interface, inhibiting the outward diffusion of yttrium from high-yttria t-ZrO2 The YAG layer reduced the NiCoCrAlY bond-coat oxidation rate by a factor of three during isothermalfurnace tests conducted at 1200° C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Wright, and A. G. Evans, Current Opinion in Solid State and Materials Science 4, 255-265 (1999).

    Google Scholar 

  2. A. Rabiei, and A. G. Evans, Acta Materialia 48, 3963-3976 (2000).

    Google Scholar 

  3. J. H. Sun, E. Chang, C. H. Chao, and M. J. Cheng, Oxidation of Metals 40, 465(1993).

    Google Scholar 

  4. Y. C. Tsui, and T. W. Clyne, in Thermal Spray: Practical Solutions for Engineering Problems, C. C. Berndt, ed. (ASM International, Materials Park, OH, 1996), pp. 275-284.

    Google Scholar 

  5. Y. J. Su, H. Wang, W. D. Porter, A. R. de Arellano Lopez, and K. T. Faber, Journal of Materials Science 36, 3511(2001).

    Google Scholar 

  6. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1976), p. 620.

    Google Scholar 

  7. D. P. H. Hasselman, L. F. Johnson, and L. D. Bentsen, et al. American Ceramic SocietyBulletin 66, 799(1987).

    Google Scholar 

  8. N. P. Padture, and P. G. Klemens, Journal of American Ceramic Society 80, 1018(1997).

    Google Scholar 

  9. T. F. Bernecki, and D. R. Marron, Small Particle Plasma Spray Apparatus, Methods, and Coated Article. U.S. Patent No. 5 744 777 and No. 5 858 470, Northwestern University, Evanston, IL ((1998, 1999)).

  10. Y. J. Su, T. F. Bernecki, and K. T. Faber, Journal of Thermal Spray Technology 11, 52(2002).

    Google Scholar 

  11. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, Journal of Applied Physics 32, 1679(1961).

    Google Scholar 

  12. H. Wang, R. B. Dinwiddie, and P. S. Gaal, in Thermal Conductivity 23, K. E. Wilkes, R. B. Dinwiddie, and R. S. Graves, eds. (Technomic Publishing Co., Lancaster, 1996), pp. 119-126.

    Google Scholar 

  13. ASTM C373–88 (ASTM International, West Conshohocken, PA, 1999).

  14. B. D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing Company, Reading, MA, 1978).

    Google Scholar 

  15. B. C. Wu, E. Chang, D. Tu, and S. L. Wang, Materials Science and Engineering A 111, 201(1989).

    Google Scholar 

  16. W. Brandl, Surface and Coatings Technology 86–87 41(1996).

    Google Scholar 

  17. N. Czech, M. Juez-Lorenzo, V. Kolarik, and W. Stamm, Surface and Coatings Technology 108–109, 36(1998).

    Google Scholar 

  18. J. A. Haynes, M. K. Ferber, W. D. Porter, and E. D. Rigney, Oxidation of Metals 52, 31(1999).

    Google Scholar 

  19. W. J. Quadakkers, Werkstoffe und Korrosion 41, 659-668 1990).

    Google Scholar 

  20. P. Niranatlumpong, C. B. Ponton, and H. E. Evans, Oxidation of Metals 53, 241-258 2000).

    Google Scholar 

  21. K. S. Ravichandran, and K. An, Journal of American Ceramic Society 82, 673(1999).

    Google Scholar 

  22. K. An, K. S. Ravichandran, R. E. Dutton, and S. L. Semiatin, Journal of the American Ceramic Society 82, 399(1999).

    Google Scholar 

  23. R. W. Trice, Y. J. Su, K. T. Faber, H. Wang, and W. Porter, Material and Science Engineering A 272, 284(1999).

    Google Scholar 

  24. J. Bodzenta, Chaos, Solitons and Fractals 10, 2087(1999).

    Google Scholar 

  25. P. A. Medwick, H. E. Fischer, and R. O. Pohl, Journal of Alloys and Compounds 203, 67(1994).

    Google Scholar 

  26. R. A. Miller, J. L. Smialek, and R. G. Garlick, in Advances in Ceramics 3: Science and Technology of Zirconia, A. H. Heuer, and L. W. Hobbs, eds. (American Ceramic Society, Columbus, OH, 1981) pp. 241-253.

    Google Scholar 

  27. L. Sagalowicz, P. Muralt, S. Hiboux, T. Maeder, K. Brooks, Z. Highelman, and N. Setter, Materials Research Society of Symposium Proceedings 596, 265(2000).

    Google Scholar 

  28. S. L. Shinde, D. A. Olson, L. C. De Jonghe, and R. A. Miller, Ceramic Engineering Science Proceedings 7, 1032(1986).

    Google Scholar 

  29. G. Muller, G. Schumacher, and D. Straub, Surface and Coatings Technology 108–109, 43(1998).

    Google Scholar 

  30. N. Birks, and G. H. Meier, Introduction to High-temperature Oxidation of Metals (Edward Arnold, London, 1983).

    Google Scholar 

  31. W. J. Brindley, and R. A. Miller, Surface and Coatings Technology 43–44, 446(1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Y.J., Trice, R.W., Faber, K.T. et al. Thermal Conductivity, Phase Stability, and Oxidation Resistance of Y3Al5O12 (YAG)/Y2O3–ZrO2 (YSZ) Thermal-Barrier Coatings. Oxidation of Metals 61, 253–271 (2004). https://doi.org/10.1023/B:OXID.0000025334.02788.d3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:OXID.0000025334.02788.d3

Navigation