Skip to main content
Log in

Influence of Cryomilling on the Morphology and Composition of the Oxide Scales Formed on HVOF CoNiCrAlY Coatings

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Commercially available, gas-atomized CoNiCrAlY powder was cryomilled to produce powder with nanocrystalline grains. The cryomilled powder and conventional gas-atomized powder were thermally sprayed using the HVOF process to prepare two coatings with fine-grain (∼15 nm) and coarse-grain (∼1 μm) microstructure, respectively. The two coatings were isothermally oxidized in air at 1000° C for up to 330 hr. The morphology and composition of the oxide scales formed on the two coatings were compared with each other. The results indicate that, while a fine-grain microstructure can promote the formation of a pure alumina layer on the coating by increasing the Al diffusion rate toward the surface, it can also accelerate the Al depletion by increasing the Al diffusion rate toward the substrate, which results in the formation of non-alumina oxides after long-term oxidation. The mechanisms governing the oxide formation are discussed in terms of atomic diffusion and thermodynamic stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. G. Shillington, and D. R. Clarke, Acta Materialia 47, 1297(1999).

    Google Scholar 

  2. Y. H. Sohn, J. H. Kim, E. H. Jordan, and M. Gell, Surface and Coatings Technology 146–147, 70(2001)

    Google Scholar 

  3. H. Iwamoto, T. Sumikawa, K. Nishida, T. Asano, M. Nishida, and T. Araki, Materials Science and Engineering A 241, 251(1998).

    Google Scholar 

  4. V. Guttmann, F. Hukelmann, D. Griffin, A. Daadbin, and S. Datta, Surface and Coatings Technology 166, 72(2003).

    Google Scholar 

  5. L. Zhao, and E. Lugscheider, Surface and Coatings Technology 149, 231(2002).

    Google Scholar 

  6. Y. N. Wu, G. Zhang, Z. C. Feng, B. C. Zhang, Y. Liang, and F. J. Liu, Surface and Coatings Technology 138, 56(2001).

    Google Scholar 

  7. W. Brandl, H. J. Grabke, D. Toma, and J. Krüger, Surface and Coatings Technology 86–87, 41(1996).

    Google Scholar 

  8. Y. N. Wu, M. Qin, Z. C. Feng, Y. Liang, C. Sun, and F. H. Wang, Materials Letters 57, 2404(2003).

    Google Scholar 

  9. F. Gesmundo, and Y. Niu, Oxidation of Metals 50, 1(1998).

    Google Scholar 

  10. V. S. Rao, R. G. Baligidad, and V. S. Raja, Intermetallics 10, 73(2002).

    Google Scholar 

  11. E. A. G. Shillington, and D. R. Clarke, Acta Materialia 47, 1297(1999).

    Google Scholar 

  12. M. H. Li, X. F. Sun, S. K. Gong, Z. Y. Zhang, H. R. Guan, and Z. Q. Hu, Surface and Coating Technology 176, 209(2004).

    Google Scholar 

  13. J. Müller, and D. Neuschütz, Vacuum 71, 247(2003).

    Google Scholar 

  14. H. Choi, B. Yoon, H. Kim, and C. Lee, Surface and Coatings Technology 150, 297(2002).

    Google Scholar 

  15. C. Wagner, Zeitschrift Fur Elektrochemie 63, 772(1959).

    Google Scholar 

  16. Z. Liu, W. Gao, K. L. Dahm, and F. Wang, Acta Materialia 46, 1691(1998).

    Google Scholar 

  17. A. Atkinson, Solid State Ionics 12, 309(1984).

    Google Scholar 

  18. E. W. Hart, Acta Materialia 5, 597(1957).

    Google Scholar 

  19. B. A. Pint, J. Leibowitz, and J. H. DeVan, Oxidation of Metals 51, 181(1999).

    Google Scholar 

  20. P. Pérez, Corrosion Science 44, 1793(2002).

    Google Scholar 

  21. G. Chen, and H. Lou, Oxidation of Metals 54, 155(2000).

    Google Scholar 

  22. Z. Liu, W. Gao, K. L. Dahm, and F. Wang, Oxidation of Metals 50, 51(1998).

    Google Scholar 

  23. G. J. Goedjen, and D. A. Shores, Oxidation of Metals 37, 125(1992).

    Google Scholar 

  24. L. Ajdelsztajn, J. A. Picas, G. E. Kim, F. L. Bastian, J. M. Schoenung, and V. Provenzano, Materials Science and Engineering A 338, 33(2002).

    Google Scholar 

  25. J. He, and J. M. Schoenung, Materials Science and Engineering A 336, 274(2002).

    Google Scholar 

  26. K. Zener, and C. S. Smith, Transaction of AIME 15, 175(1948).

    Google Scholar 

  27. F. Tang, L. Ajdelsztajn, G. E. Kim, V. Provenzano, and J. M. Schoenung, Surface and Coatings Technology, in press.

  28. P. Y. Hou, and J. Stringer, Acta Metallurgica Et Materialia 39, 841(1991).

    Google Scholar 

  29. D. Strauss, G. Müller, G. Schumacher, V. Engelko, W. Stamm, D. Clemens, and W. J. Quaddakers, Surface and Coatings Technology 135, 196(2001).

    Google Scholar 

  30. Z. Liu, W. Gao, and F. Wang, Scripta Materialia 39, 1497(1998).

    Google Scholar 

  31. M. J. Stiger, N. M. Yanar, M. G. Topping, F. S. Pettit, and G. H. Meier, Zeitschrift Fur Metallkunde 90, 1069(1999).

    Google Scholar 

  32. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, Progress in Materials Science 46, 505(2001).

    Google Scholar 

  33. A. Prince, Alloy Phase Equilibria (Elsevier Publishing, 1960), Chapter 2.

  34. E. A. Brandes, and G. B. Brook, ed. Smithells Metals Reference Book, 7th ed. (Reed Educational and Professional Publishing Ltd, 1992), Chapter 8.

  35. K. Messaoudi, A. M. Huntz, and B. Lesage, Materials Science and Engineering A 247, 248(1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, F., Ajdelsztajn, L. & Schoenung, J.M. Influence of Cryomilling on the Morphology and Composition of the Oxide Scales Formed on HVOF CoNiCrAlY Coatings. Oxidation of Metals 61, 219–238 (2004). https://doi.org/10.1023/B:OXID.0000025332.26757.41

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:OXID.0000025332.26757.41

Navigation