Skip to main content

A Universal Definition of Life: Autonomy and Open-Ended Evolution

Abstract

Life is a complex phenomenon that not only requires individual self-producing and self-sustaining systems but also a historical-collective organization of those individual systems, which brings about characteristic evolutionary dynamics. On these lines, we propose to define universally living beings as autonomous systems with open-ended evolution capacities, and weclaim that all such systems must have a semi-permeable active boundary (membrane), an energy transduction apparatus (set of energy currencies) and, at least, two types of functionally interdependent macromolecular components (catalysts and records).The latter is required to articulate a `phenotype-genotype' decoupling that leads to a scenario where the global network ofautonomous systems allows for an open-ended increase in the complexity of the individual agents. Thus, the basic-individual organization of biological systems depends critically on being instructed by patterns (informational records) whose generationand reliable transmission cannot be explained but take into account the complete historical network of relationships amongthose systems. We conclude that a proper definition of life should consider both levels, individual and collective: livingsystems cannot be fully constituted without being part of theevolutionary process of a whole ecosystem. Finally, we alsodiscuss a few practical implications of the definition fordifferent programs of research.

This is a preview of subscription content, access via your institution.

References

  1. Benner, S. A.: 1999, How Small can a Microorganism be? in Size Limits of Very Small Microorganisms (Proceedings of a Workshop), National Academy Press, Washington, D.C., pp. 126–135.

    Google Scholar 

  2. Bro, P.: 1997, Chemical Reaction Automata, Complexity 2, 38–44.

    Google Scholar 

  3. Brooks, D. R. and Wiley, E. O.: 1988, Evolution as Entropy: Toward a Unified Theory of Biology, University of Chicago Press, Chicago (reviewed edition of 1986).

    Google Scholar 

  4. Cleland, C. E. and Chyba C. F.: 2002, Defining ‘Life’, Origins Life Evol. Biosph. 32, 387–393.

    Google Scholar 

  5. de Duve, C.: 1991, Blueprint for a Cell: The Nature and Origin of Life, Neil Patterson, Burlington, p. 4.

    Google Scholar 

  6. Deamer, D. W.: 1998, ‘Membrane Compartments in Prebiotic Evolution’, in A. Brack (ed.), The Molecular Origins of Life. Assembling the Pieces of the Puzzle, Cambridge University Press, Cambridge, pp. 189–205.

    Google Scholar 

  7. Doolittle, W. F.: 1999, Phylogenetic Classification and the Universal Tree, Science 284, 2124–2128.

    Google Scholar 

  8. Dyson, F. J.: 1985, Origins of Life, Cambridge University Press, Cambridge.

    Google Scholar 

  9. Eigen, M.: 1992, Steps Towards Life: A Perspective on Evolution, Oxford University Press, New York.

    Google Scholar 

  10. Eigen, M. and Schuster, P.: 1979, The Hypercycle: A Principle of Natural Self-organization, Springer, New York.

    Google Scholar 

  11. Emmeche, C.: 1998, Defining Life as a Semiotic Phenomenon, Cybernet. Human Knowing 5, 3–17.

    Google Scholar 

  12. Farmer, J. D. and Belin, A. d'A.: 1992, ‘Artificial Life: The Coming Evolution’, in C. G. Langton, C. Taylor, J. D. Farmer and S. Rasmussen (eds), Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity Proceedings, Vol. X, Addison-Wesley, Redwood City, CA, pp. 815–838.

    Google Scholar 

  13. Fernández, J., Moreno, A. and Etxeberria, A.: 1991, Life as Emergence: The roots of a New Paradigm in Theoretical Biology, World Futures (The Journal of General Evolution) 32, 133–149.

    Google Scholar 

  14. Fleischaker, G. R.: 1988, Autopoiesis: The Status of its System Logic, BioSystems 22, 37–49.

    Google Scholar 

  15. Fleischaker, G. R.: 1994, ‘A Few Precautionary Words Concerning Terminology’, in G. R. Fleischaker, S. Colonia and P. L. Luisi (eds), Self-production of Supramolecular Structures, Kluwer Academic Publishers, Dordrecht, pp. 33–41.

    Google Scholar 

  16. Ganti, T.: 1987, The Principle of Life, OMIKK, Budapest.

    Google Scholar 

  17. Haynes, R. H.: 1990, ‘Ecce Ecopoiesis: Playing God on Mars’, in D. MacNiven (ed.), Moral Expertise: Studies in Practical and Professional Ethics, Routledge, London, pp. 161–183.

    Google Scholar 

  18. Hitchcock, D. R. and Lovelock, J. E.: 1967, Life detection by atmospheric analysis, Icarus 7, 149–159.

    Google Scholar 

  19. Hoffmeyer, J. and Emmeche C.: 1991, ‘Code-duality and the Semiotics of Nature’, in M. Anderson and F. Merrell (eds), On Semiotic Modeling, Mouton de Gruyter, New York, pp. 117–166.

    Google Scholar 

  20. Joyce, G. F.: 1994, ‘Foreword’, in D. W. Deamer and G. R. Fleischaker (eds), Origins of Life: The Central Concepts, Jones and Bartlett, Boston, pp. xi–xii.

    Google Scholar 

  21. Kauffman, S.: 1993, The Origins of Order: Self-organization and Selection in Evolution, Oxford University Press, Oxford.

    Google Scholar 

  22. Kauffman, S.: 2000, Investigations, Oxford University Press, Oxford, Ch. 3.

    Google Scholar 

  23. Koshland Jr., D. E.: 2002, The Seven Pillars of Life, Science 295, 2215–2216.

    Google Scholar 

  24. Lazcano, A.: 2001, ‘Origin of Life’, in D. E. G. Briggs and P. R. Crowther (eds), Paleobiology II, Blackwell Science, Oxford, pp. 3–8.

    Google Scholar 

  25. Lewontin, R. C.: 1970, The Units of Selection, Annu. Rev. Ecol. System. 1, 1–18.

    Google Scholar 

  26. Lovelock, J. E.: 1988, The Ages of Gaia, Norton, New York.

    Google Scholar 

  27. Lovelock, J. E. and Margulis, L.: 1974a, Atmospheric Homeostasis by and for the Biosphere: The Gaia Hypothesis, Tellus 26, 2–10.

    Google Scholar 

  28. Lovelock, J. E. and Margulis, L.: 1974b, Homeostatic Tendencies of the Earth's Atmosphere, Origins Life 1, 12–22.

    Google Scholar 

  29. Luisi, P. L.: 1998, About Various Definitions of Life, Orig. Life Evol. Biosph. 28, 613–622.

    Google Scholar 

  30. Luisi, P. L.: 1994, ‘The Chemical Implementation of Autopoiesis’, in G. R. Fleischaker, S. Colonna and P. L. Luisi (eds), Self-production of Supramolecular Structures, Kluwer Academic Publishers, Dordrecht, pp. 179–197.

    Google Scholar 

  31. Margulis, L.: 1990, ‘Big Trouble in Biology: Physiological Autopoiesis Versus Mechanistic Neo-Darwinism’, in J. Brockman (ed.), Doing Science: The Reality Club 2, Prentice Hall, NY, pp. 211–235.

    Google Scholar 

  32. Margulis, L. and Sagan, D.: 2002, Acquiring Genomes. A Theory of the Origin of Species, Basic Books, New York, Ch. 2.

    Google Scholar 

  33. Maturana, H. and Varela, F. J.: 1973, De Máquinas y seres Vivos — Una Teoría Sobre la Organización biológica, Editorial Universitaria S.A., Santiago de Chile.

    Google Scholar 

  34. Maynard Smith, J.: 1986, The Problems of Biology, Oxford University Press, Oxford.

    Google Scholar 

  35. Maynard Smith, J. and Szathmáry, E.: 1995, The Major Transitions in Evolution, Freeman and Co., Oxford.

    Google Scholar 

  36. Mayr, E.: 1982, The Growth of Biological Thought, Harvard University Press, Cambridge, MA.

    Google Scholar 

  37. McMullin, B.: 2000, John von Neumann and the Evolutionary Growth of Complexity: Looking Backward, Looking Forward..., Artificial Life 6, 347–361.

    Google Scholar 

  38. Moreno, A. and Fernández, J.: 1990, Structural Limits for Evolutive Capacities in Molecular Complex Systems, Biology Forum 83, 335–347.

    Google Scholar 

  39. Moreno, A. and Ruiz-Mirazo, K.: 1999, Metabolism and the Problem of its Universalization, BioSystems 49, 45–61.

    Google Scholar 

  40. Moreno, A. and Ruiz-Mirazo, K.: 2002, Key Issues Regarding the Origin, Nature and Evolution of Complexity in Nature: Information as a Central Concept to Understand Biological Organization, Emergence 4, 63–76.

    Google Scholar 

  41. Moreno, A., Umerez, J. and Fernandez, J.: 1994, Definition of Life and Research Program in Artificial Life, Ludus Vitalis 2, 15–33.

    Google Scholar 

  42. Morowitz, H. J.: 1968, Energy Flow in Biology, Academic Press, New York.

    Google Scholar 

  43. Morowitz, H. J.: 1981, Phase Separation, Charge Separation and Biogenesis, BioSystems 14, 41–47.

    Google Scholar 

  44. Morowitz, H. J.: 1992, Beginnings of Cellular Life, Yale University Press, New Haven.

    Google Scholar 

  45. Morowitz, H. J., Heinz, B. and Deamer, D. W.: 1988, The Chemical Logic of a Minimum Protocell, Origins Life Evol. Biosph. 18, 281–287.

    Google Scholar 

  46. Nicolis, G. and Prigogine, Y.: 1977, Self-organization in Non-equilibrium Systems, Wiley, New York.

    Google Scholar 

  47. Oparin, A. I.: 1961, Life. Its Nature, Origin, and Development, Academic Press, New York, Ch. 1.

    Google Scholar 

  48. Pattee, H. H.: 1967, Quantum Mechanics, Heredity and the Origin of Life, J. Theor. Biol. 17, 410–420.

    Google Scholar 

  49. Pattee, H. H.: 1977, Dynamic and Linguistic Modes of Complex Systems, Int. J. Gen. Syst. 3, 259–266.

    Google Scholar 

  50. Pattee, H. H.: 1982, Cell Psychology: An Evolutionary Approach to the Symbol-matter Problem, Cognit. Brain Theor. 4, 325–341.

    Google Scholar 

  51. Pattee, H. H.: 1997, ‘The Physics of Symbols and Evolution of Semiotic Controls’, in M. Coombs (ed.), Workshop on Control Mechanisms for Complex Systems: Issues of Measurement and Semiotic Analysis, New Mexico State University.

  52. Páyli, G., Zucchi, C. and Caglioti, L.: 2002, Fundamentals of Life, Elsevier, Paris.

    Google Scholar 

  53. Rosen, R.: 1991, Life Itself: A Comprehensive Inquiry into the Nature, Origin and Fabrication of Life, Columbia University Press, New York.

    Google Scholar 

  54. Ruiz-Mirazo, K.: 2001, ‘Condiciones Físicas para la Aparición de Sistemas Autónomos con Capacidades Evolutivas Abiertas’, Ph.D. Dissertation, University of the Basque Country, San Sebastián.

    Google Scholar 

  55. Ruiz-Mirazo, K. and Moreno, A.: 1998, ‘Autonomy and Emergence: how Systems become Agents through the Generation of Functional Constraints, in G. L. Farre and T. Oksala (eds), Emergence, Complexity, Hierarchy, Organization (Selected and edited papers from the ECHO III Conference), Acta Polytech. Scand. Ma91, The Finnish Academy of Technology, Espoo-Helsinki, pp. 273–282.

    Google Scholar 

  56. Ruiz-Mirazo, K. and Moreno, A.: 2000, Searching for the Roots of Autonomy: The Natural and Artificial Paradigms Revisited, J. Integr. Study Artific. Intel. Cogn. Sci. Appl. Epistemol. Special Issue on Autonomy 17, 209–228.

    Google Scholar 

  57. Sagan, C.: 1970, ‘Life’, in The Encyclopaedia Britannica, William Benton, London.

    Google Scholar 

  58. Sagan, D. and Margulis, L.: 1984, ‘Gaia and Philosophy’, in L. S. Rouner (ed.), On Nature, University of Notre Dame Press, Notre Dame, IN, pp. 60–75.

    Google Scholar 

  59. Segré, D., Ben-Eli, D. and Lancet, D.: 2000, Compositional Genomes: Prebiotic Information Transfer in Mutually Catalytic Non-covalent Assemblies, Proc. Nat. Acad. Sci. U.S.A. 97, 4112–4117.

    Google Scholar 

  60. Shapiro, R.: 2002, ‘Monomer World’, in Abstracts of the 13th International Conference on the Origin of Life, 10th ISSOL Meeting, Oaxaca, Mexico, p. 60.

    Google Scholar 

  61. Shapiro, R. and Feinberg, G.: 1990, ‘Possible Forms of Life in Environments very Different from the Earth’, in J. Leslie (ed.), Physical Cosmology and Philosophy, MacMillan, New York, pp. 248–255.

    Google Scholar 

  62. Szostak, J. W., Bartel, P. and Luisi, P. L.: 2001, Synthesizing Life, Nature 409, 387–390.

    Google Scholar 

  63. Umerez, J.: 1995, ‘Semantic Closure: A Guiding Notion to Ground Artificial Life’, in F. Morán, A. Moreno, J. J. Merelo and P. Chacón (eds), Advances in Artificial Life, Springer-Verlag, Heidelberg, pp. 77–94.

    Google Scholar 

  64. Varela, F. J.: 1979, Principles of Biological Autonomy, Elsevier, New York.

    Google Scholar 

  65. Varela, F. J.: 1994, ‘On Defining Life’, in G. R. Fleischaker, S. Colonna and P. L. Luisi (eds), Self-production of Supramolecular Structures, Kluwer Academic Publishers, Dordrecht, pp. 23–31.

    Google Scholar 

  66. Von Neumann, J.: 1966, Theory of Self-reproducing Automata, A. W. Burks (ed.), University of Illinois, Urbana.

    Google Scholar 

  67. Wächtershäuser, W.: 1988, Before Enzymes and Templates: Theory of Surface Metabolism, Microbiological Reviews 52, 452–484.

    Google Scholar 

  68. Wicken, J. S.: 1987, Evolution, Thermodynamics and Information. Extending the Darwinian Program, Oxford University Press, Oxford.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alvaro Moreno.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ruiz-Mirazo, K., Peretó, J. & Moreno, A. A Universal Definition of Life: Autonomy and Open-Ended Evolution. Orig Life Evol Biosph 34, 323–346 (2004). https://doi.org/10.1023/B:ORIG.0000016440.53346.dc

Download citation

  • artificial life
  • astrobiology
  • autonomousagents
  • definition of life
  • generalization of biology
  • genotype-phenotype decoupling
  • open-ended evolution
  • origin of life
  • origins of (genetic) information