A Universal Definition of Life: Autonomy and Open-Ended Evolution

  • Kepa Ruiz-Mirazo
  • Juli Peretó
  • Alvaro MorenoEmail author


Life is a complex phenomenon that not only requires individual self-producing and self-sustaining systems but also a historical-collective organization of those individual systems, which brings about characteristic evolutionary dynamics. On these lines, we propose to define universally living beings as autonomous systems with open-ended evolution capacities, and weclaim that all such systems must have a semi-permeable active boundary (membrane), an energy transduction apparatus (set of energy currencies) and, at least, two types of functionally interdependent macromolecular components (catalysts and records).The latter is required to articulate a `phenotype-genotype' decoupling that leads to a scenario where the global network ofautonomous systems allows for an open-ended increase in the complexity of the individual agents. Thus, the basic-individual organization of biological systems depends critically on being instructed by patterns (informational records) whose generationand reliable transmission cannot be explained but take into account the complete historical network of relationships amongthose systems. We conclude that a proper definition of life should consider both levels, individual and collective: livingsystems cannot be fully constituted without being part of theevolutionary process of a whole ecosystem. Finally, we alsodiscuss a few practical implications of the definition fordifferent programs of research.

artificial life astrobiology autonomousagents definition of life generalization of biology genotype-phenotype decoupling open-ended evolution origin of life origins of (genetic) information 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benner, S. A.: 1999, How Small can a Microorganism be? in Size Limits of Very Small Microorganisms (Proceedings of a Workshop), National Academy Press, Washington, D.C., pp. 126–135.Google Scholar
  2. Bro, P.: 1997, Chemical Reaction Automata, Complexity 2, 38–44.Google Scholar
  3. Brooks, D. R. and Wiley, E. O.: 1988, Evolution as Entropy: Toward a Unified Theory of Biology, University of Chicago Press, Chicago (reviewed edition of 1986).Google Scholar
  4. Cleland, C. E. and Chyba C. F.: 2002, Defining ‘Life’, Origins Life Evol. Biosph. 32, 387–393.Google Scholar
  5. de Duve, C.: 1991, Blueprint for a Cell: The Nature and Origin of Life, Neil Patterson, Burlington, p. 4.Google Scholar
  6. Deamer, D. W.: 1998, ‘Membrane Compartments in Prebiotic Evolution’, in A. Brack (ed.), The Molecular Origins of Life. Assembling the Pieces of the Puzzle, Cambridge University Press, Cambridge, pp. 189–205.Google Scholar
  7. Doolittle, W. F.: 1999, Phylogenetic Classification and the Universal Tree, Science 284, 2124–2128.Google Scholar
  8. Dyson, F. J.: 1985, Origins of Life, Cambridge University Press, Cambridge.Google Scholar
  9. Eigen, M.: 1992, Steps Towards Life: A Perspective on Evolution, Oxford University Press, New York.Google Scholar
  10. Eigen, M. and Schuster, P.: 1979, The Hypercycle: A Principle of Natural Self-organization, Springer, New York.Google Scholar
  11. Emmeche, C.: 1998, Defining Life as a Semiotic Phenomenon, Cybernet. Human Knowing 5, 3–17.Google Scholar
  12. Farmer, J. D. and Belin, A. d'A.: 1992, ‘Artificial Life: The Coming Evolution’, in C. G. Langton, C. Taylor, J. D. Farmer and S. Rasmussen (eds), Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity Proceedings, Vol. X, Addison-Wesley, Redwood City, CA, pp. 815–838.Google Scholar
  13. Fernández, J., Moreno, A. and Etxeberria, A.: 1991, Life as Emergence: The roots of a New Paradigm in Theoretical Biology, World Futures (The Journal of General Evolution) 32, 133–149.Google Scholar
  14. Fleischaker, G. R.: 1988, Autopoiesis: The Status of its System Logic, BioSystems 22, 37–49.Google Scholar
  15. Fleischaker, G. R.: 1994, ‘A Few Precautionary Words Concerning Terminology’, in G. R. Fleischaker, S. Colonia and P. L. Luisi (eds), Self-production of Supramolecular Structures, Kluwer Academic Publishers, Dordrecht, pp. 33–41.Google Scholar
  16. Ganti, T.: 1987, The Principle of Life, OMIKK, Budapest.Google Scholar
  17. Haynes, R. H.: 1990, ‘Ecce Ecopoiesis: Playing God on Mars’, in D. MacNiven (ed.), Moral Expertise: Studies in Practical and Professional Ethics, Routledge, London, pp. 161–183.Google Scholar
  18. Hitchcock, D. R. and Lovelock, J. E.: 1967, Life detection by atmospheric analysis, Icarus 7, 149–159.Google Scholar
  19. Hoffmeyer, J. and Emmeche C.: 1991, ‘Code-duality and the Semiotics of Nature’, in M. Anderson and F. Merrell (eds), On Semiotic Modeling, Mouton de Gruyter, New York, pp. 117–166.Google Scholar
  20. Joyce, G. F.: 1994, ‘Foreword’, in D. W. Deamer and G. R. Fleischaker (eds), Origins of Life: The Central Concepts, Jones and Bartlett, Boston, pp. xi–xii.Google Scholar
  21. Kauffman, S.: 1993, The Origins of Order: Self-organization and Selection in Evolution, Oxford University Press, Oxford.Google Scholar
  22. Kauffman, S.: 2000, Investigations, Oxford University Press, Oxford, Ch. 3.Google Scholar
  23. Koshland Jr., D. E.: 2002, The Seven Pillars of Life, Science 295, 2215–2216.Google Scholar
  24. Lazcano, A.: 2001, ‘Origin of Life’, in D. E. G. Briggs and P. R. Crowther (eds), Paleobiology II, Blackwell Science, Oxford, pp. 3–8.Google Scholar
  25. Lewontin, R. C.: 1970, The Units of Selection, Annu. Rev. Ecol. System. 1, 1–18.Google Scholar
  26. Lovelock, J. E.: 1988, The Ages of Gaia, Norton, New York.Google Scholar
  27. Lovelock, J. E. and Margulis, L.: 1974a, Atmospheric Homeostasis by and for the Biosphere: The Gaia Hypothesis, Tellus 26, 2–10.Google Scholar
  28. Lovelock, J. E. and Margulis, L.: 1974b, Homeostatic Tendencies of the Earth's Atmosphere, Origins Life 1, 12–22.Google Scholar
  29. Luisi, P. L.: 1998, About Various Definitions of Life, Orig. Life Evol. Biosph. 28, 613–622.Google Scholar
  30. Luisi, P. L.: 1994, ‘The Chemical Implementation of Autopoiesis’, in G. R. Fleischaker, S. Colonna and P. L. Luisi (eds), Self-production of Supramolecular Structures, Kluwer Academic Publishers, Dordrecht, pp. 179–197.Google Scholar
  31. Margulis, L.: 1990, ‘Big Trouble in Biology: Physiological Autopoiesis Versus Mechanistic Neo-Darwinism’, in J. Brockman (ed.), Doing Science: The Reality Club 2, Prentice Hall, NY, pp. 211–235.Google Scholar
  32. Margulis, L. and Sagan, D.: 2002, Acquiring Genomes. A Theory of the Origin of Species, Basic Books, New York, Ch. 2.Google Scholar
  33. Maturana, H. and Varela, F. J.: 1973, De Máquinas y seres Vivos — Una Teoría Sobre la Organización biológica, Editorial Universitaria S.A., Santiago de Chile.Google Scholar
  34. Maynard Smith, J.: 1986, The Problems of Biology, Oxford University Press, Oxford.Google Scholar
  35. Maynard Smith, J. and Szathmáry, E.: 1995, The Major Transitions in Evolution, Freeman and Co., Oxford.Google Scholar
  36. Mayr, E.: 1982, The Growth of Biological Thought, Harvard University Press, Cambridge, MA.Google Scholar
  37. McMullin, B.: 2000, John von Neumann and the Evolutionary Growth of Complexity: Looking Backward, Looking Forward..., Artificial Life 6, 347–361.Google Scholar
  38. Moreno, A. and Fernández, J.: 1990, Structural Limits for Evolutive Capacities in Molecular Complex Systems, Biology Forum 83, 335–347.Google Scholar
  39. Moreno, A. and Ruiz-Mirazo, K.: 1999, Metabolism and the Problem of its Universalization, BioSystems 49, 45–61.Google Scholar
  40. Moreno, A. and Ruiz-Mirazo, K.: 2002, Key Issues Regarding the Origin, Nature and Evolution of Complexity in Nature: Information as a Central Concept to Understand Biological Organization, Emergence 4, 63–76.Google Scholar
  41. Moreno, A., Umerez, J. and Fernandez, J.: 1994, Definition of Life and Research Program in Artificial Life, Ludus Vitalis 2, 15–33.Google Scholar
  42. Morowitz, H. J.: 1968, Energy Flow in Biology, Academic Press, New York.Google Scholar
  43. Morowitz, H. J.: 1981, Phase Separation, Charge Separation and Biogenesis, BioSystems 14, 41–47.Google Scholar
  44. Morowitz, H. J.: 1992, Beginnings of Cellular Life, Yale University Press, New Haven.Google Scholar
  45. Morowitz, H. J., Heinz, B. and Deamer, D. W.: 1988, The Chemical Logic of a Minimum Protocell, Origins Life Evol. Biosph. 18, 281–287.Google Scholar
  46. Nicolis, G. and Prigogine, Y.: 1977, Self-organization in Non-equilibrium Systems, Wiley, New York.Google Scholar
  47. Oparin, A. I.: 1961, Life. Its Nature, Origin, and Development, Academic Press, New York, Ch. 1.Google Scholar
  48. Pattee, H. H.: 1967, Quantum Mechanics, Heredity and the Origin of Life, J. Theor. Biol. 17, 410–420.Google Scholar
  49. Pattee, H. H.: 1977, Dynamic and Linguistic Modes of Complex Systems, Int. J. Gen. Syst. 3, 259–266.Google Scholar
  50. Pattee, H. H.: 1982, Cell Psychology: An Evolutionary Approach to the Symbol-matter Problem, Cognit. Brain Theor. 4, 325–341.Google Scholar
  51. Pattee, H. H.: 1997, ‘The Physics of Symbols and Evolution of Semiotic Controls’, in M. Coombs (ed.), Workshop on Control Mechanisms for Complex Systems: Issues of Measurement and Semiotic Analysis, New Mexico State University.Google Scholar
  52. Páyli, G., Zucchi, C. and Caglioti, L.: 2002, Fundamentals of Life, Elsevier, Paris.Google Scholar
  53. Rosen, R.: 1991, Life Itself: A Comprehensive Inquiry into the Nature, Origin and Fabrication of Life, Columbia University Press, New York.Google Scholar
  54. Ruiz-Mirazo, K.: 2001, ‘Condiciones Físicas para la Aparición de Sistemas Autónomos con Capacidades Evolutivas Abiertas’, Ph.D. Dissertation, University of the Basque Country, San Sebastián.Google Scholar
  55. Ruiz-Mirazo, K. and Moreno, A.: 1998, ‘Autonomy and Emergence: how Systems become Agents through the Generation of Functional Constraints, in G. L. Farre and T. Oksala (eds), Emergence, Complexity, Hierarchy, Organization (Selected and edited papers from the ECHO III Conference), Acta Polytech. Scand. Ma91, The Finnish Academy of Technology, Espoo-Helsinki, pp. 273–282.Google Scholar
  56. Ruiz-Mirazo, K. and Moreno, A.: 2000, Searching for the Roots of Autonomy: The Natural and Artificial Paradigms Revisited, J. Integr. Study Artific. Intel. Cogn. Sci. Appl. Epistemol. Special Issue on Autonomy 17, 209–228.Google Scholar
  57. Sagan, C.: 1970, ‘Life’, in The Encyclopaedia Britannica, William Benton, London.Google Scholar
  58. Sagan, D. and Margulis, L.: 1984, ‘Gaia and Philosophy’, in L. S. Rouner (ed.), On Nature, University of Notre Dame Press, Notre Dame, IN, pp. 60–75.Google Scholar
  59. Segré, D., Ben-Eli, D. and Lancet, D.: 2000, Compositional Genomes: Prebiotic Information Transfer in Mutually Catalytic Non-covalent Assemblies, Proc. Nat. Acad. Sci. U.S.A. 97, 4112–4117.Google Scholar
  60. Shapiro, R.: 2002, ‘Monomer World’, in Abstracts of the 13th International Conference on the Origin of Life, 10th ISSOL Meeting, Oaxaca, Mexico, p. 60.Google Scholar
  61. Shapiro, R. and Feinberg, G.: 1990, ‘Possible Forms of Life in Environments very Different from the Earth’, in J. Leslie (ed.), Physical Cosmology and Philosophy, MacMillan, New York, pp. 248–255.Google Scholar
  62. Szostak, J. W., Bartel, P. and Luisi, P. L.: 2001, Synthesizing Life, Nature 409, 387–390.Google Scholar
  63. Umerez, J.: 1995, ‘Semantic Closure: A Guiding Notion to Ground Artificial Life’, in F. Morán, A. Moreno, J. J. Merelo and P. Chacón (eds), Advances in Artificial Life, Springer-Verlag, Heidelberg, pp. 77–94.Google Scholar
  64. Varela, F. J.: 1979, Principles of Biological Autonomy, Elsevier, New York.Google Scholar
  65. Varela, F. J.: 1994, ‘On Defining Life’, in G. R. Fleischaker, S. Colonna and P. L. Luisi (eds), Self-production of Supramolecular Structures, Kluwer Academic Publishers, Dordrecht, pp. 23–31.Google Scholar
  66. Von Neumann, J.: 1966, Theory of Self-reproducing Automata, A. W. Burks (ed.), University of Illinois, Urbana.Google Scholar
  67. Wächtershäuser, W.: 1988, Before Enzymes and Templates: Theory of Surface Metabolism, Microbiological Reviews 52, 452–484.Google Scholar
  68. Wicken, J. S.: 1987, Evolution, Thermodynamics and Information. Extending the Darwinian Program, Oxford University Press, Oxford.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Kepa Ruiz-Mirazo
    • 1
    • 2
  • Juli Peretó
    • 3
  • Alvaro Moreno
    • 1
    • 4
    Email author
  1. 1.Centre of Astrobiology (INTA/CSIC)MadridSpain and
  2. 2.Department of Fundamental SciencesMondragón UniversityBasque CountrySpain
  3. 3.Department of Biochemistry and Molecular BiologyUniversity of ValènciaSpain
  4. 4.Department of Logic and Philosophy of ScienceUniversity of the Basque CountrySan Sebastian-DonostiaSpain (author for correspondence, e-mail

Personalised recommendations