Earth's Oldest (∼ 3.5 Ga) Fossils and the `Early Eden Hypothesis': Questioning the Evidence

Abstract

We question the biogenicity of putative bacterial andcyanobacterial `microfossils' from3465 Ma Apex cherts of the Warrawoona Group in WesternAustralia. They arechallenged on the basis of integrated multidisciplinary evidenceobtained from field andfabric mapping plus new high-resolution research into theircontext, sedimentology,filament morphology, `septation' and arrangement. They cannotbe distinguished from(and are reinterpreted as) secondary artefacts of amorphouscarbon that formed duringdevitrification of successive generations of carbonaceoushydrothermal dyke vein quartz.Similar structures occur within associated carbonaceous volcanicglass. The nullhypothesis of an abiotic or prebiotic origin for such ancientcarbonaceous matter issustained until mutually supporting contextural, morphologicaland geochemicalevidence for a bacterial rather than abiotic origin is forthcoming.

This is a preview of subscription content, access via your institution.

References

  1. Awramik, S. M., Schopf, J. W. and Walter, M. R.: 1983, Filamentous Fossil Bacteria from the Archaean of Western Australia, Precambrian Research 20, 357–374.

    Google Scholar 

  2. Baker, R. T. K. and Harris, P. S.: 1978, The Formation of Filamentous Carbon, in P. L. Walker and P. A. Thrower (eds.), Chemistry and Physics of Carbon, Dekker, New York, pp. 2–165.

    Google Scholar 

  3. Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., van Kranendonk, M.J., Lindsay, J. F., Steele, A. and Grassineau, N. V.: 2002, Questioning the Evidence for Earth's Oldest Fossils, Nature 416, 76–81.

    Google Scholar 

  4. Buick, R.: 1990, Microfossil Recognition in Archaean Rocks: An Appraisal of Spheroids and Filaments from 3500 M.Y. Old Chert-Barite Unit at North Pole, Western Australia, Palaios 5, 441–459.

    Google Scholar 

  5. Buick, R., Groves, D. I. and Dunlop, J. S. R.: 1981, Stromatolite Recognition in Ancient Rocks: An Appraisal of Irregularly Laminated Structures in an Early Archaean Chert-Barite Unit from North Pole, Western Australia, Alcheringa 5, 161–181.

    Google Scholar 

  6. Chambers, P.: 1999, Life on Mars — The Complete Story, Blandford, London, pp. 222.

    Google Scholar 

  7. Dalton, R.: 2002, Squaring up over Ancient Life, Nature 417, 782–784.

    Google Scholar 

  8. Deegan, R. D. 2000. Pattern Formation in Drying Drops, Physics Review, January 2000, 475–485.

  9. De Gregorio, B. T. and Sharp, T. G.: 2003, Determining the Biogenicity of Microfossils in the Apex Chart,Western Australia, using Transmission Electronmicroscopy, Lunar and Planetary Science XXXIV, 1267.pdf.

  10. Dunlop, J. S. R., Muir, M. D., Milne, V. A. and Groves, D. I.: 1978, A New Microfossil Assemblage from the Archaean of Western Australia, Nature 274, 676–678.

    Google Scholar 

  11. Fedo, C. M. and Whitehouse, M. J.: 2002, Metasomatic Origin of Quartz-Pyroxene Rock, Akilia, Greenland, and its Implications for Earth's Earliest Life, Science 296, 1448–1452.

    Google Scholar 

  12. Fulsome, C., Allen, R. D. and Ichinose, N. K.: 1975, Organic Structures as Products of Miller-Urey Electrical Discharge, Precambrian Research 2, 263–275.

    Google Scholar 

  13. Grotzinger, J. P. and Rothman, D. H.: 1996, An Abiotic Model for Stromatolite Morphogenesis, Nature 383, 423–425.

    Google Scholar 

  14. Harris, P. J. F.: 2001, Carbon Nanotubes and Related Structures, Cambridge University Press, 279 pp.

  15. Holm, N. G. and Charlou, J. L.: 2001, Initial Indicators of Abiotic Formation of Hydrocarbons in the Rainbow Ultramafic Hydrothermal System, Mid-Atlantic Ridge, Earth and Planetary Science Letters 191, 1–8.

    Google Scholar 

  16. Hofmann, H. J.: 1972, Precambrian Remains in Canada: Fossils, Dubiofossils, and Pseudofossils, 24th International Geological Congress, Montreal, Section 1, pp. 20–30.

  17. Hofmann, H. J., Grey, K., Hickman, A. H. and Thorpe, R. I.: 1999, Origin of 3.45 Ga Coniform Stromatolites in the Warrawoona Group, Western Australia, Bulletin of the Geological Society of America 111, 1256–1262.

    Google Scholar 

  18. Horita, J. and Berndt, M. E.: 1999, Abiogenic Methane Formation and Isotopic Fractionation under Hydrothermal Conditions, Science 285, 1055–1057.

    Google Scholar 

  19. Horodyski, R. L.: 1981, Pseudomicrofossils and Altered Microfossils from Middle Proterozoic Shale, Belt Supergroup, Montana, Precambrian Research 16, 143–154.

    Google Scholar 

  20. Hyde, S., Welham, N., Christy, A. and Garcia Ruiz, J.: 2002, Laboratory Growth of Inorganic Carbonate aggregates whose Morphology is Identical to the Apex Chert Nanofossils, Astrobiology Science Conference, Abstract Volume, NASA Ames, California, 144 pp.

  21. Kauffman, S.: 1996, At home in the Universe: The Search for Laws of Self-Organization and Complexity, Penguin, London, 321 pp.

    Google Scholar 

  22. Kazmierczak, J. and Kremer, B.: 2002, Thermal Alteration of Earth's Oldest Fossils, Nature 420, 477–478.

    Google Scholar 

  23. Kirkpatrick, R.: 1916, The Nummulosphere, III, Lamley & Co., London.

    Google Scholar 

  24. Lowe, D. R.: 1983, Restricted Shallow-Water Sedimentation of 3.4 Byr — Old Stromatolitic and Evaporitic Strata of the Strelley Pool Chert, Pilbara Block, Western Australia, Precambrian Research 19, 239–283.

    Google Scholar 

  25. Lowe, D. R.: 2003, Chert Dikes: Perhaps the Best Sites for the Preservation and Discovery of Archean Microfossils and Biological Remains, NASA Astrobiology General Meeting, Arizona State University, Abstract Volume, 201 pp.

  26. McKay, D. S., Gibson, E. K., Jr., Thomas-Keprta, K. L., Vali, H., Romanek, C. S., Clemett, S. J., Chiller, X. D. F., Maechling, C. R. and Zare, R. N.: 1996, Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH 84001, Science 273, 924–930.

    Google Scholar 

  27. Medawar, P. B.: 1982, Pluto's Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought, Oxford University Press, Oxford, 351 pp.

    Google Scholar 

  28. Mojsis, S. J., Arrenhius, G., McKeegan, K. D., Harrison, T. M., Nutman, A. P. and Friend, C. R. L.: 1996, Evidence for Life on Earth 3,800 Million Years Ago, Nature 384, 55–59.

    Google Scholar 

  29. Nakashima, S., Maryuma, S., Brack, A. and Windley, B. F.: 2002, Geochemistry and the Origin of Life, Universal Academy Press, Inc., Tokyo, Japan, 353 pp.

    Google Scholar 

  30. Nijman, W., de Bruijne, H. and Valkering, M. E.: 1998, Growth Fault Control of Early Archaean Cherts, Barite Mounds and Chert-Barite Veins, North Pole Dome, Eastern Pilbara, Western Australia, Precambrian Research 88, 25–52.

    Google Scholar 

  31. Parnell, J.: 2003, Mineral Radioactivity in Sands as a Mechanism for Fixation of Organic Carbon on the Early Earth, Orig. Life Evol. Biosphere 34, (in press).

  32. Pasteris, J. D. and Wopenka, B.: 2002a, Distinguishing Kerogens from Abiotically Produced Carbonaceous Material: Limitations of Raman Spectroscopy, Geological Society of America, Abstracts with Programs, Denver Meeting, October 2002.

  33. Pasteris, J. D. and Wopenka, B.: 2002b, Images of the Earth's Earliest Fossils? Nature 420, 476–477.

    Google Scholar 

  34. Prigogine, I. and Stengers, I.: 1984, Order Out of Chaos: Man's New Dialogue with Nature, Fontana, London, 349 pp.

  35. Rao, A. M., Richter, E., Bandow, S., Chase, B., Eklund, P. C., Williams, K. A., Fang, S., Subasswamy, K. R., Menon, M., Thess, A., Smalley, R. E., Dresselhaus, G. and Dresselhaus, M. S.: 1997, Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes, Science 275, 187–191.

    Google Scholar 

  36. Rosing, M. T.: 1999, C13-Depleted Carbon Microparticles in >3700-Ma Sea-Floor Sedimentary Rocks from West Greenland, Science 283, 674–676.

    Google Scholar 

  37. Schidlowski, M. and Aharon, P.: 1992, Carbon Cycle and Carbon Isotope Record: Geochemical Impact of Life over 3.8Ga of Earth History, in Schidlowski, M., Golubic, S., Kimberley, M. M., McKirdy, D. M. and Trudinger, P. A. (eds), Early Organic Evolution, Springer Verlag, Berlin, pp. 147–175.

    Google Scholar 

  38. Schoenberg, R., Kamber, B. S., Collerson, K. D. and Moorbath, S.: 2002, Tungsten Isotope Evidence from ~3.8-Gyr Metamorphosed Sediments for Early Meteorite Bombardment of the Earth, Nature 418, 403–405.

    Google Scholar 

  39. Schopf, J. W.: 1992, Palaeobiology in the Archean, in Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study, Cambridge University Press, pp. 25–39.

  40. Schopf, J. W.: 1993, Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life, Science 260, 640–646.

    Google Scholar 

  41. Schopf, J. W.: 1999, Cradle of Life, Princeton University Press, New Jersey, 367 pp.

    Google Scholar 

  42. Schopf, J. W. and Packer, B. M.: 1987, Early Archean (3.3 Billion to 3.5 Billion-Year-Old) Microfossils from Warrawoona Group, Australia, Science 237, 70–73.

    Google Scholar 

  43. Schopf, J. W. and Walter, M. R.: 1983, Archean Microfossils: New Evidence of Ancient Microbes, in J. W. Schopf (ed.), Earth's Earliest Biosphere, its Origin and Evolution, Princeton University Press, New Jersey, pp. 214–239.

    Google Scholar 

  44. Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Wdowiak, T. J. and Czaja, A. D.: 2002a, Laser-Raman Imagery of Earth's Earliest Fossils, Nature 416, 73–76.

    Google Scholar 

  45. Schopf, J.W., Kudryavtsev, A. B., Agresti, D. G., Wdowiak, T. J. and Czaja, A.D.: 2002b, Images of the Earth's Earliest Fossils? Nature 420, 477.

    Google Scholar 

  46. Sherwood Lollar, B, Westgate, T. D., Ward, J. A., Slater, G. F. and Lacrampe-Couloume, G.: 2002, Abiogenic Formation of Alkanes in the Earth's Crust as a Minor Source for Global Hydrocarbon Reservoirs, Nature 416, 522–524.

    Google Scholar 

  47. Strauss, H. and Moore, T. B.: 1992, Abundances and Isotopic Compositions of Carbon and Sulfur Species in Whole Rock and Kerogen Samples, in J. W. Schopf, and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study, Cambridge University Press, Cambridge, pp. 709–798.

    Google Scholar 

  48. Tenenbaum, D.: 2003, Earth's Oldest Fossils Reverse Course, Astrobiology Magazine http://www.astrobio.net/news/article421.html

  49. van Kranendonk, M. J., Hickman, A. H., Williams, I. R. and Nijman, W.: 2001, Archaean Geology of the East Pilbara Granite-Greenstone Terrane, Western Australia — a Field Guide, Geological Survey of Western Australia, Record 2001/9, 134 pp.

  50. van Zuilen, M. A., Lepland, A. and Arhenius, G.: 2002, Reassessing the Evidence for the Earliest Traces of Life, Nature 418, 627–630.

    Google Scholar 

  51. Walter, M. R., Buick, R. and Dunlop, J. S. R.: 1980, Stromatolites 3,400-3,500 Myr Old from the North Pole Area, Western Australia, Nature 284, 443–445.

    Google Scholar 

  52. Wopenka, B. and Pasteris, J. D.: 1993, Structural Characterization of Kerogens to Granulite-Facies Graphite: Applicability of Raman Microprobe Spectroscopy, American Mineralogist 78, 533–557.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Brasier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brasier, M., Green, O., Lindsay, J. et al. Earth's Oldest (∼ 3.5 Ga) Fossils and the `Early Eden Hypothesis': Questioning the Evidence. Orig Life Evol Biosph 34, 257–269 (2004). https://doi.org/10.1023/B:ORIG.0000009845.62244.d3

Download citation

  • Archaean
  • carbon isotopes
  • early Earth
  • fossils
  • hydrothermal
  • photosynthesis