Skip to main content
Log in

Improved Semivectorial Field Correction Method for Efficient and Accurate Design Analysis of Fused 2 × 2 Fiber Coupler Devices

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A simple and accurate analysis of mode coupling characteristics in fused 2 × 2 fiber-couplers is presented. The model is based on a combined perturbation correction technique and semivectorial field correction scheme of mode analysis. Realistic model of taper profile and coupler cross section owing to fabricated structures, in the framework of polarized supermode-beating description, successfully interprets a variety of measured coupler characteristics. With the inherent accuracy of finite difference algorithm, the analytical basis of perturbation correction method enables the mode convergence abruptly fast as required for a design analysis. Typical results of our method and comparison with measured coupler characteristics show the efficacy of our model as an accurate and efficient design recipe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birks, T.A. and Y.W. Li. J. Lightwave Technol. LT 10 432, 1992.

    ADS  Google Scholar 

  • Bures, J., S. Lacroix and J. Lapierre. App. Opt. 22 1918, 1983.

    ADS  Google Scholar 

  • Burns, W.K. and M. Abebe. App. Opt. 26 4190, 1987.

    ADS  Google Scholar 

  • Chaudhuri, R.P. Proceedings of Optoelectronics and Communication Conference. Yokohama, Japan, 8–12 July 2002, p. 354.

  • Chaudhuri, R.P., C. Zhao, V. Paulose et al., Asia Pacific Optoelectronics Conference SPIE. Wuhan, China, 2–6 November 2003, Paper 5279–02.

  • Chaudhuri, R.P., A.K. Ghatak, B.P. Pal and C. Lu. Opt. & Las. Tech. OLT (In press) 1004, 2004.

  • Chiang, K.S. Opt. Quantum Elect. 17 381, 1985.

    ADS  Google Scholar 

  • Chiang, K.S. App. Opt. 25 348, 1986.

    ADS  Google Scholar 

  • Chiang, K.S. Opt. Lett. 12 431, 1987.

    ADS  Google Scholar 

  • Eisenmann, M. and E. Weidel. J. Lightwave Technol. 8 113, 1988.

    ADS  Google Scholar 

  • Eyges, L.P., P. Wintersteiner and P.D. Gianino. J. Opt. Soc. Am. 69 1226, 1979.

    ADS  Google Scholar 

  • Gonthier, F., S. Lacroix and J. Bures. Opt. Quantum Elect. 26 S135, 1994.

    Google Scholar 

  • Huang, H.S. and H.C. Chang. J. Lightwave Technol. 8 823, 1990.

    ADS  Google Scholar 

  • James, J.R. and I.N.L. Gallett. Radio Elect. Engineering 42, p. 103,1972.

    Google Scholar 

  • Kaczmarski, P., P. Lagasse and J. Vandewge. IEE Proc. Pt. J. 143, 1987.

  • Kawano, K. and T. Kitoh. Introduction to Optical Waveguide Analysis, John Wiley and Sons, Inc., New York, 2001, (Chapter 4).

    Google Scholar 

  • Kawasaki, B.S., K.O. Hill and R.G. Lamont. Opt. Lett. 6 327, 1981.

    ADS  Google Scholar 

  • Kenny, R.P., T.A. Birks and K.P. Oakley. Elect. Lett. 27 1654, 1991.

    Google Scholar 

  • Kumar, A., K. Thyagarajan and A.K. Ghatak. Opt. Lett. 8 63, 1983.

    ADS  Google Scholar 

  • Kumar, A. and R.K. Varshney. Opt & Quantum Electron 16 349, 1984.

    ADS  Google Scholar 

  • Kumar, A., M.R. Shenoy and K. Thyagarajan. IEEE Trans. Microwave Theory & Tech. MTT 32 1415, 1984.

    Google Scholar 

  • Kumar, A., A.N. Kaul and A.K. Ghatak. Opt. Lett. 10 86, 1985.

    ADS  Google Scholar 

  • Kumar, A. and R.K. Varshney. Opt. Lett. 14 817, 1989.

    ADS  Google Scholar 

  • Lacroix, S., F. Gonthier and J. Bures. App. Opt. 33 8361, 1994.

    ADS  Google Scholar 

  • Love, J.D. and M. Hall. Electron. Lett. 21 519, 1985.

    Google Scholar 

  • Okamoto, K. Fundamentals of Optical Waveguides, Academic Press, San Diego, 2000.

    Google Scholar 

  • Pal, B.P. In: Electromagnetics of All-Fiber Components in Electromagnetic Fields in Unconventional Structures and Materials, eds. A. Lakhtokia and O.N. Singh, John Wiley, New York, 2000.

    Google Scholar 

  • Payne, F.P. J. Institution of Electronics and Telecommunications Engineers (India) 32 319, 1986.

    Google Scholar 

  • Payne, F.P., C.D. Hussey and M.S. Yataki. Electron. Lett. 21 461, 1985.

    Google Scholar 

  • Rahman, B.M.A. and J.B. Davies. Microwave Theory and Technol. MTT. 32 20, 1984.

    ADS  Google Scholar 

  • Rodriguez, J.M.P., T.S.M. Maclean, B.K. Gazey and J.F. Miller. Electron. Lett. 22 402, 1986.

    Google Scholar 

  • Roy, S., R. Tewari and K. Thyagarajan. J. Opt. Commun. 12 26, 1991.

    Google Scholar 

  • Schweig, E. and W.B. Bridges. Microwave Theory Technol. MTT. 32 531, 1984.

    ADS  Google Scholar 

  • She, S., L. Qiqo and J. Wang. Opt. Comm. 65 415, 1988.

    ADS  Google Scholar 

  • Snyder, A.W. and J.D. Love. Optical Waveguide Theory, Chapman and Hall, London, 1983.

    Google Scholar 

  • Varshney, R.K. and A. Kumar. J. Lightwave Technol. LT 6 601, 1988.

    ADS  Google Scholar 

  • Wright, J.V. Electron. Lett. 21 1064, 1985.

    Google Scholar 

  • Wu, Tzong-Lin. J. Lightwave Technol. 18 1024, 2000.

    ADS  Google Scholar 

  • Yeh, C., K. Ha, S.B. Dong and W.P. Brown. App. Opt. 18 1490, 1979.

    ADS  Google Scholar 

  • Zhang, J.L, Z.M. Mao and Z.Q. Lin. App. Opt. 28 2026, 1989.

    ADS  Google Scholar 

  • Zheng, X.H. Electron. Lett. 22 804, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhuri, P., Pal, B.P. & Shenoy, M.R. Improved Semivectorial Field Correction Method for Efficient and Accurate Design Analysis of Fused 2 × 2 Fiber Coupler Devices. Optical and Quantum Electronics 36, 641–657 (2004). https://doi.org/10.1023/B:OQEL.0000034724.43423.73

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:OQEL.0000034724.43423.73

Navigation