Skip to main content
Log in

Truncation rules for modelling discontinuities with Galerkin method in electromagnetic theory

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

It is well known that apparently similar discretization schemes of Maxwell's equations in Fourier series may provide very different convergence performances because of truncation. We argue that this work performed in grating theory can be applied to other electromagnetic theories relying on expansions over series different from Fourier series. This generalization is supported by an intuitive argument and by a simple numerical example with Hermite–Gauss functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M. and I.A. Stegun. Handbook of Mathematical Functions, Dover Publications, New York, Chapter 22, 1972.

    Google Scholar 

  • Bérenger, J.P. J. Comput. Phys. 114 185, 1994.

    Google Scholar 

  • Booton, R.C. Computational Methods for Electromagnetics and Microwaves, p. 113. John Wiley, New York, 1992.

    Google Scholar 

  • Chandezon, J., D. Maystre and G. Raoult. J. Opt. (Paris) 11 235, 1980.

    Google Scholar 

  • Ctyroky, J., S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. de Ridder, R. Stoffer, G. Klaasse, J. Petracek, Ph. Lalanne, J.P. Hugonin and R.M. De La Rue. Opt. Quantum Electron. 34 455, 2002.

    Google Scholar 

  • Enoch, S., E. Popov and M. Nevière. Proc. SPIE 4438 183, 2001.

  • Gallawa, R.L., I.C. Goyal, Y. Tu and K. Ghatak. IEEE J. Quantum. Electron. 27 518, 1991.

    Google Scholar 

  • Gaylord, T.K. and M.G. Moharam. Proc. IEEE 73 894, 1985.

    Google Scholar 

  • Granet G. and B. Guizal. J. Opt. Soc. Am. A 13 1019, 1996.

    Google Scholar 

  • Helfert, S.F. and R. Pregla. J. Lightwave Technol. 14 2414, 1996.

    Google Scholar 

  • Ho, K.M., C.T. Chan and C.M. Soukoulis. Phys. Rev. Lett. 65 3152, 1990.

    Google Scholar 

  • Hoekstra, H.J.W.M., G.J.M. Krijnen and P.V. Lambeck. J. Lightwave Technol. 10 1352, 1992.

    Google Scholar 

  • Knop, K. J. Opt. Soc. Am. A 68 1206, 1978.

    Google Scholar 

  • Lalanne, Ph. Phys. Rev. B 58 9801, 1998.

    Google Scholar 

  • Lalanne, Ph. IEEE J. Quantum. Electron. 38 800, 2002.

    Google Scholar 

  • Lalanne, Ph. and J.P. Hugonin. J. Opt. Soc. Am. A 17 1033, 2000.

    Google Scholar 

  • Lalanne, Ph. and G.M. Morris. J. Opt. Soc. Am. A 13 779, 1996.

    Google Scholar 

  • Lalanne, Ph. and E. Silberstein. Opt. Lett. 25 1092, 2000.

    Google Scholar 

  • Li, L. J. Opt. Soc. Am. A 13 1870, 1996.

    Google Scholar 

  • Li, L. J. Opt. Soc. Am. A 14 2758, 1997.

    Google Scholar 

  • Li, L. In: Mathematical Modeling in Optical Science, Frontiers in Applied Mathematics, eds. G. Bao, L. Cowsar and W. Masters, p. 111. Society for Industrial and Applied Mathematics, Philadelphia, 2001.

  • Li, L. and J. Chandezon, J. Opt. Soc. Am. A 13 2247, 1996.

    Google Scholar 

  • Li, L. and C.W. Haggans, J. Opt. Soc. Am. A 10 1184, 1993.

    Google Scholar 

  • Marcuse, D. IEEE J. Quantum. Electron. 28 459, 1992.

    Google Scholar 

  • Mogilevtsev, D., T.A. Birks and P.S. Russell. Opt. Lett. 23 1662, 1998.

    Google Scholar 

  • Monro, T.M., D.J. Richardson, N.G.R. Broderick and P.J. Bennett. IEEE J. Lightwave Technol. 17 1093, 1999.

    Google Scholar 

  • Nevière, M., P. Vincent, R. Petit and M. Cadilhac. Opt. Commun. 9 48, 1973.

    Google Scholar 

  • Ortega-Monux, A., J.G. Wanguemert-Perez and I. Molina-Fernandez. J. Opt. Soc. Am. A 20 557, 2003.

    Google Scholar 

  • Palamaru, M. and Ph. Lalanne. Appl. Phys. Lett. 78 1466, 2001.

    Google Scholar 

  • Popov, E. and M. Nevière. J. Opt. Soc. Am. A 17 1773, 2000.

    Google Scholar 

  • Rasmussen, T., J.H. Povslen, A. Bjarklev, O. Lumholt, B. Pedersen and K. Rottwitt. IEEE J. Lightwave Technol. 11 429, 1993.

    Google Scholar 

  • Sauvan, C., Ph. Lalanne, J.C. Rodier, J.P. Hugonin and A. Talneau. IEEE Photon. Technol. Lett. 15 1243, 2003.

    Google Scholar 

  • Silberstein, E., Ph. Lalanne, J.P. Hugonin and Q. Cao. J. Opt. Soc. Am. A 18 2865, 2001.

    Google Scholar 

  • Snyder, A.W. and J.D. Love. Optical Waveguide Theory, Chapman & Hall, London, 1983.

    Google Scholar 

  • Tervo, J., M. Kuittinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala and M. Leppihalme. Opt. Comm. 198 265, 2001.

    Google Scholar 

  • Villeneuve, P.R. and M. Piché. J. Mod. Opt. 41 241, 1994.

    Google Scholar 

  • Welsshar, A., J. Li, R.L. Gallawa, I.C. Goyal, Y. Tu and K. Ghatak. IEEE J. Lightwave Technol. 13 1795, 1995.

    Google Scholar 

  • Yeh, P. Optical Waves in Layered Media, John Wiley, New York, Chapter 11, 1998.

    Google Scholar 

  • Zhang, Z. and S. Satpathy. Phys. Rev. Lett. 65 2650, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CH. Sauvan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauvan, C., Lalanne, P. & Hugonin, J. Truncation rules for modelling discontinuities with Galerkin method in electromagnetic theory. Optical and Quantum Electronics 36, 271–284 (2004). https://doi.org/10.1023/B:OQEL.0000015645.39040.0e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:OQEL.0000015645.39040.0e

Navigation