Skip to main content
Log in

On Some Nonendoreversible Engine Models with Nonlinear Heat Transfer Laws

  • Published:
Open Systems & Information Dynamics

Abstract

In this work, we analyze a nonendoreversible thermal engine model with a nonlinear heat transfer law between the heat reservoirs and the working fluid under two optimization criteria: the maximum power regime and the so-called ecological criterion. We find that this nonendoreversible model has a similar behaviour to that shown by De Vos (Am. J. Phys. 53, 570 (1985)) for endoreversible models with two thermal conductances with only one superior conductance and with only one inferior conductance, respectively. The model is compared with two sets of real power plants, the first one containing power plants of old design (before 1960's) and the second one being formed by modern nuclear power plants. Our results suggest that the first group was designed under conditions which, are reminiscent of a maximum power regime and the second one under an ecological-like criterion. We also study some general properties of nonendoreversible thermal engine models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  1. D. Gutkowitcz, I. Procaccia, and J. Ross, On the efficiency of rate processes: Power and efficiency of heat engines, J. Chem. Phys. 69, 3898 (1978).

    Google Scholar 

  2. L. A. Arias-Hernández and F. Angulo-Brown, Thermodynamic Optimization of endoreversible engines, Rev. Mex. Fís. 40, 866 (1994).

    Google Scholar 

  3. A. de Vos, Efficiency of some heat engines at maximum power conditions, Am. J. Phys. 53, 570 (1985).

    Google Scholar 

  4. L. Chen and Z. Yan, The effect of heat transfer law on the performance of two-heat-source endoreversible cycle, J. Chem. Phys. 90, 3740 (1989).

    Google Scholar 

  5. F. Angulo-Brown and R. Páez-Hernández, Endoreversible thermal cycle with a nonlinear heat transfer law, J. Appl. Phys. 74, 2216 (1993).

    Google Scholar 

  6. G. de Mey and A. de Vos, On the optimum efficiency of endoreversible thermodynamic processes, J. Phys. D: Appl. Phys. 27, 736 (1994).

    Google Scholar 

  7. M. Rubin, Optimal configuration of a class of irreversible heat engines I, Phys. Rev. A 19, 1272 (1979).

    Google Scholar 

  8. S. Özkaynak, S. Göktun, and H. Yavuz, Finite-time thermodynamics analysis of a radiative heat engine with internal irreversibility, J. Phys. D: Appl. Phys. 27, 1139 (1994).

    Google Scholar 

  9. J. Chen, The maximum power output and maximum efficiency of an irreversible Carnot heat engine, J. Phys. D: Appl. Phys. 27, 1144 (1994).

    Google Scholar 

  10. L. A. Arias-Hernández and F. Angulo-Brown, A general property of endoreversible thermal engines, J. Appl. Phys. 81, 2973 (1997).

    Google Scholar 

  11. M. Tribus, Thermostatics and Thermodynamics, D. Van Nostrand, Princeton, 1961.

    Google Scholar 

  12. F. Angulo-Brown, An ecological optimization criterion for finite-time heat engines, J. Appl. Phys. 69, 7465 (1991).

    Google Scholar 

  13. F. Angulo-Brown and L. A. Arias-Hernández, Reply to “Coment on ‘A general property of endoreversible thermal engines’” [J. Appl. Phys. 89, 1518 (2001)], J. Appl. Phys. 89, 1520 (2001).

    Google Scholar 

  14. M. Santillán, G. Maya, and F. Angulo-Brown, Local stability analysis of an endoreversible Curzon-Ahlborn-Novikov engine working in a maximum-power-like regime, J. Phys. D: Appl. Phys. 34, 2068 (2001).

    Google Scholar 

  15. A. de Vos, Endoreversible Thermodynamics of Solar Energy Conversion, Oxford University Press, Oxford, 1992.

    Google Scholar 

  16. A. Bejan, Advanced Engineering Thermodynamics, Wiley, New York, 1988.

    Google Scholar 

  17. S. Velasco, J. M. M. Roco, A. Medina, J. A. White, and A. Calvo, Optimization of heat engines inlcuding the saving of natural resources and the reduction of thermal polution, J. Phys. D: Appl. Phys. 33, 355 (2000).

    Google Scholar 

  18. www.johnstonsarchive.net/environment/nuclearplants.html

  19. C. T. O'Sullivan, Newton law of cooling-critical assesement, Am. J. Phys 58, 956 (1990).

    Google Scholar 

  20. F. Angulo-Brown, M. Santillán, and E. Calleja-Quevedo, Thermodynamic optimality in some biochemical reactions, Il Nuovo Cimento D 17, 87 (1995).

    Google Scholar 

  21. M. Santillán, L. A. Arias-Hernández, and F. Angulo-Brown, Some optimization criteria for bilogical systems in linear irreversible thermodynamics, Il Nuovo Cimento D 19, 99 (1997).

    Google Scholar 

  22. A. de Vos, Reflections on the power delivered by endoreversible engines, J. Phys. D: Appl. Phys. 20, 232 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arias-Hernández, L.A., de Parga, G.A. & Angulo-Brown, F. On Some Nonendoreversible Engine Models with Nonlinear Heat Transfer Laws. Open Systems & Information Dynamics 10, 351–375 (2003). https://doi.org/10.1023/B:OPSY.0000009556.27759.11

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:OPSY.0000009556.27759.11

Keywords

Navigation