Skip to main content
Log in

Minimal Work for Separation Processes of Binary Mixtures

  • Published:
Open Systems & Information Dynamics

Abstract

The work expenditures for both perfect and imperfect separation processes are well known for the reversible case; yet such a description is often far from reality. Real processes operate at finite times and non-zero rates leading to an additional, irreversible energy expenditure. This paper employs an idealized van t'Hoff chamber as a theoretical model to derive lower bounds for the irreversible work in real separation processes such as membrane separation. Methods of optimal control for open systems and nonlinear programming of averaged problems are used to calculate the optimal mass transfer kinetics for the finite-time separation of binary mixtures of ideal gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  1. R. Kümmel, D. Lindenberger, W. Eichborn, Energie, Wirtschaftswachstum und technischer Fortschritt, Phys. Bl., 53, 869 (1997).

    Google Scholar 

  2. J. G. Xu, R. Agrawal, Membrane separation process analysis and design strategies based on thermodynamic efficiency of permeation, Chem. Eng. Sci. 51, 365 (1996).

    Google Scholar 

  3. F. L. Curzon, B. Ahlborn, Efficiency of a carnot engine at maximum power output, Am. J. Phys., 43, 22 (1975).

    Google Scholar 

  4. B. Andresen, R. S. Berry, A. Nitzan, P. Salamon, Thermodynamics in finite time. I. the step-carnot cycle, Phys. Rev. A 15, 2086 (1977).

    Google Scholar 

  5. G. R. Brown, S. Snow, B. Andresen, P. Salamon, Finite-time thermodynarnics of a porous plug, Phys. Rev. A 34, 4370 (1986).

    Google Scholar 

  6. P. Salamon, A. Nitzan, Finite time optimizations of a newton's law Carnot cycle, J. Chem. Phys. 74, 3546 (1981).

    Google Scholar 

  7. M. J. Ondrechen, B. Andresen, M. Mozurkewich, R. S. Berry, Maximum work from a finite reservoir by sequential Carnot cycles, Am. J. Phys. 49, 681 (1981).

    Google Scholar 

  8. L. I. Rozonoer, A. M. Tsirlin, Optimal control of thermodynamic processes I., Autom. Remote Control USSR 44, 55 (1983), translated from Avtomatika i Telemekhanika.

    Google Scholar 

  9. L. I. Rozonoer, A. M. Tsirlin, Optimal control of thermodynamic processes II., Autom. Remote Control USSR, 44 209 (1983), translated from Avtomatika i Telemekhanika.

    Google Scholar 

  10. L. I. Rozonoer, A. M. Tsirlin, Optimal control of thermodynamic processes III., Autom. Remote Control USSR, 44, 314 (1983), translated from Avtomatika i Telemekhanika.

    Google Scholar 

  11. L. I. Rozonoer, Thermodynamics and Regulation of Biological Processes, de Gryter, Berlin, 1984.

    Google Scholar 

  12. P. Salamon, Y. B. Band, O. Kafri, Maximum power from a cycling working fluid, J. Appl. Phys. 53, 197 (1982).

    Google Scholar 

  13. B. Andresen, R. S. Berry, M. J. Ondrechen, P. Salamon, Thermodynamics for processes in finite-time, Acc. Chem. Research 17, 266 (1984).

    Google Scholar 

  14. O. C. Mullins, R. S. Berry, Minimization of entropy production in destillation, J. Phys. Chem. 88, 723 (1984).

    Google Scholar 

  15. L. I. Rozonoer, A. V. Rudenko, A. M. Tsirlin, Theor. Osn. Chim. Tech. 362 (1984) (in Russian).

  16. A. G. Kuznetov, A. V. Rudenko, A. M. Tsirlin, Optimal-control in thermodynamic systems with sources of finite-capacity, Automation and Remote Control USSR 46, 693 (1985).

    Google Scholar 

  17. K. H. Hoffmann, S. J. Watowich, R. S. Berry, Optimal paths for thermodynamic systems: The ideal diesel cycle, J. Appl. Phys. 58, 2125 (1985).

    Google Scholar 

  18. S. J. Watowich, K. H. Hoffmann, R. S. Berry, Intrinsically irreversible light-driven engine, J. Appl. Phys., 58, 2893 (1985).

    Google Scholar 

  19. S. J. Watowich, R. S. Berry, Optimal current paths for model electrochemical systems, J. Phys. Chem. 90, 4624 (1986).

    Google Scholar 

  20. J. W. Warner, R. S. Berry, On the thermodynamics of fuel synthesis, J. Phys. Chem. 91, 2216 (1987).

    Google Scholar 

  21. V. A. Mironova, A. M. Tsirlin, Y. B. Samarin, Gaseous-mixtures separation processes thermodynamic analysis, Khimicheskaya Promyshlennost 486 (1988) (in Russian).

  22. A. M. Tsirlin, Cyclic Processes and Cyclic Regimes, Mashinostroenie, Moscow, 1985 (in Russian).

    Google Scholar 

  23. V. N. Orlov, R. S. Berry, Power output from an irreversible heat engine with a nonuniform working fluid, Phys. Rev. A 42, 7230 (1990).

    Google Scholar 

  24. V. N. Orlov, R. S. Berry, Estimation of minimal heat consumption for heat-driven separation processes via methods of finite-time thermodynamics, J. Chem. Phys. 95, 5624 (1991).

    Google Scholar 

  25. V. A. Mironova, A. M. Tsirlin, V. A. Kazakov, S. R. Berry, Finite-time thermodynamics: Exergy and optimization time-constrained processes, J. Appl. Phys. 76,629 (1994).

    Google Scholar 

  26. S. Sieniutycz, J. S. Shiner, Thermodynamics of irreversible processes and its relation to chemical engineering: Second law analyses and finite time thermodynamics, J. Non-Equilib. Thermodyn. 19, 303 (1994).

    Google Scholar 

  27. K. H. Hoffmann, J. M. Burzler, S. Schubert, Endoreversible thermodynamics, J. Non-Equilib. Thermodyn. 22, 311 (1997).

    Google Scholar 

  28. K. H. Hoffmann, J. M. Burzler, A. Fischer, M. Schaller, S. Schubert, Endoreversible dynamics, accepted for publication in the Journal of Non-Equilibrium Thermodynamics (2003).

  29. Z. Fonyo, Thermodynamic analysis of rectification: I. Reversible Model of rectification, Int. Chemical. Eng. 14, 18 (1974).

    Google Scholar 

  30. M. Schaller, K. H. Hoffmann, G. Siragusa, P. Salamon, and B. Andresen, Numerically optimized performance of diabatic distillation columns, Comput. Chem. Eng. 25, 1537 (2001).

    Google Scholar 

  31. W. S. W. Ho, K. K. Sirkar, Membrane Handbool, van Nostrand Reinhold, New York, 1992.

    Google Scholar 

  32. W. J. Koros, G. K. Fleming, Membrane-based gas separation, J. Membrane Sci. 83, 1 (1993).

    Google Scholar 

  33. V. A. Kazakov, R. S. Berry, Estimation of productivity, efficiency, and entropy production for cyclic separation processes with distributed working fluid, Phys. Rev. E 49, 2928 (1994).

    Google Scholar 

  34. I. M. Britan, I. L. Leites, T. N. Vasilkovskaya, Membrane technology of mixed-gas separation: Thermodynamic analysis for feasibility study, J. Membrane Sci. 55, 349 (1991).

    Google Scholar 

  35. V. Malyh, Thermodynamic restrictions and efficiency of isothermal separation processes, in: VINITI, vol. B87, 1987, p. 12.

  36. M. H. Rubin, Optimal configuration of a class of irreversible heat engines I, Phys. Rev. A 19, 1272 (1979).

    Google Scholar 

  37. M. J. Ondrechen, M. H. Rubin, Y. B. Band, The generalized carnot cycle — a working fluid operation in finite-time between finite heat sources and sinks, J. Chem. Phys. 78, 4721 (1983).

    Google Scholar 

  38. F. Reif, Statistische Physik und Theorie der Wärme, de Gruyter, Berlin, 1987.

    Google Scholar 

  39. K. Stephan, F. Mayinger, Thermodynamik — Band 1 Einstoffsysteme, Springer, Berlin, 13th edition, 1990.

    Google Scholar 

  40. L. I. Rozonoer, A. M. Tsirlin, Optimal control of thermodynamic processes III., Avtomatika i Telemekhanika, 50 (1983) (in Russian).

  41. J. Kardos, A. M. Zirlin, B. Böhme, K. Lorenz, A. W. Sajew, Dynamische Grundoperationen der Verfahrenstechnik. Modellierung und optimale Steuerung, Akademie Verlag, Berlin, 1984.

    Google Scholar 

  42. A. M. Tsirlin, Optimal Cycles & Cyclic Regimes, Energoatomizdat, Moscow, 1985.

    Google Scholar 

  43. A. M. Tsirlin, Optimality conditions for solution of averaged problems of mathematical-programming, Doklady Akademii Nauk SSSR, 323, 43 (1992), (in Russian).

    Google Scholar 

  44. A. De Vos, Endoreversible thermodynamics and chemical reactions, J. Phys. Chem. 95, 4534 (1991).

    Google Scholar 

  45. A. M. Tsirlin, Optimal control of irreversible heat and mass transfer processes, Technical Cybernetics, 171 (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amelkin, S.A., Tsirlin, A.M., Burzler, J.M. et al. Minimal Work for Separation Processes of Binary Mixtures. Open Systems & Information Dynamics 10, 335–349 (2003). https://doi.org/10.1023/B:OPSY.0000009555.63816.86

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:OPSY.0000009555.63816.86

Keywords

Navigation