Skip to main content
Log in

Some Inexact Hybrid Proximal Augmented Lagrangian Algorithms

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this work, Solodov–Svaiter's hybrid projection-proximal and extragradient-proximal methods [16,17] are used to derive two algorithms to find a Karush–Kuhn–Tucker pair of a convex programming problem. These algorithms are variations of the proximal augmented Lagrangian. As a main feature, both algorithms allow for a fixed relative accuracy of the solution of the unconstrained subproblems. We also show that the convergence is Q-linear under strong second order assumptions. Preliminary computational experiments are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bertsekas, Constrained Optimization and Lagrange Multipliers (Academic Press, New York, 1982).

    Google Scholar 

  2. D. Bertsekas, Nonlinear Programming (Athena Scientific, 1995).

  3. R.H. Byrd, P. Lu, J. Nocedal and C. Zhu, A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput. 16 (1995) 1190–1208.

    Google Scholar 

  4. D.E. Dennis Jr. and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (SIAM, Philadephia, PA, 1996).

    Google Scholar 

  5. M.D. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl. 4 (1969) 303–320.

    Google Scholar 

  6. W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes (Springer, Berlin, 1981).

    Google Scholar 

  7. C. Humes Jr., P.J.S. Silva and B. Svaiter, An inexact projection-proximal augmented Lagrangian algorithm, in: Proc. of the 36th Annual Allerton Conf. on Communication, Control, and Computing, 1998, pp. 450–459.

  8. L.S. Lasdon, An efficient algorithm for minimizing barrier and penalty functions, Math. Programming 2 (1972) 65–106.

    Google Scholar 

  9. B. Lemaire, The proximal algorithm, in: International Series of Numerical Mathematics, ed. J.P. Penot (Birkhäuser, Basel, 1989) pp. 73–87.

    Google Scholar 

  10. B. Martinet, Determination approché d'un point fixe d'une application pseudo-contractante, C. R. Acad. Sci. Paris Sér. A/B 274 (1972) A163-A165.

    Google Scholar 

  11. J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France 93 (1965) 273–299.

    Google Scholar 

  12. M.J.D. Powell, A method for nonlinear constraints in minimization problems, in: Optimization, ed. R. Fletcher (Academic Press, New York, 1969) pp. 283–298.

    Google Scholar 

  13. R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976) 887–898.

    Google Scholar 

  14. R.T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res. 1 (1976) 97–116.

    Google Scholar 

  15. K. Schittkowski, More Test Examples for Nonlinear Programming Codes (Springer, Berlin, 1987).

    Google Scholar 

  16. M. Solodov and B. Svaiter, A hybrid projection-proximal point algorithm, J. Convex Anal. 6 (1999) 59–70.

    Google Scholar 

  17. M. Solodov and B. Svaiter, A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator, Set-Valued Analysis 7 (1999) 323–345.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humes, C., Silva, P.J. & Svaiter, B.F. Some Inexact Hybrid Proximal Augmented Lagrangian Algorithms. Numerical Algorithms 35, 175–184 (2004). https://doi.org/10.1023/B:NUMA.0000021768.30330.4b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NUMA.0000021768.30330.4b

Navigation