Skip to main content
Log in

Identifying Multidimensional Damage in a Hierarchical Dynamical System

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we present a novel method for multidimensional damage identification based on a dynamical systems approach to damage evolution. This approach does not depend on the knowledge of particular damage physics, and is appropriate for systems where damage evolves on much slower time scale than the directly observable dynamics. In an experimental context, the phase space reconstruction and locally linear models are used to quantify small distortions occurring in a dynamical system's phase space due to damage accumulation. These measurements are then related to the drifts in damage variables. A mathematical model of a harmonically driven cantilever beam in a force field of two battery-powered electromagnets is used to demonstrate validity of the method. It is explicitly demonstrated that an affine projection of the described feature vector accurately tracks the two competing damage processes. For practical damage identification purposes, the tracking data is analyzed using the proper orthogonal decomposition (POD) and smooth orthogonal decomposition (SOD) methods. Both methods correctly identify the two dominant damage modes. However, the SOD is more impervious to changes in fast-time dynamics and provides a significantly better signal-to-noise ratio. The damage modes identified using SOD are demonstrated to be within a linear transformation from the actual damage states and can be used to reconstruct the corresponding phase space trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zou, Y., Tong, L., and Steven, G. P., 'Vibration-based model-dependent damage (delimination) identification and health monitoring for composite structures-a review', Journal of Sound and Vibration 230(2), 2000, 357–378.

    Google Scholar 

  2. Worden, K., Manson, G., and Fieller, N. R. J., 'Damage detection using outlier analysis', Journal of Sound and Vibration 229(3), 2000, 647–667.

    Google Scholar 

  3. Luo, G. Y., Osypiw, D., and Irle, M., 'Real-time condition monitoring by significant and natural frequencies analysis of vibration signal with wavelet filter and autocorrelation enhancement', Journal of Sound and Vibration 236(3), 2000, 413–430.

    Google Scholar 

  4. Craig, C., Neilson, D., and Penman, J., 'The use of correlation dimension in condition monitoring of systems with clearance', Journal of Sound and Vibration 231(1), 2000, 1–17.

    Google Scholar 

  5. Mechefske, C. K., 'Objective machinery fault diagnosis using fuzzy logic', Mechanical Systems and Signal Processing 12(6), 1998, 855–862.

    Google Scholar 

  6. Swanson, D. C., Spencer, J. M., and Arzoumanian, S. H., 'Prognostic modelling of crack growth in a tensioned steel band', Mechanical Systems and Signal Processing 14 (5), 2000, 789–803.

    Google Scholar 

  7. Natke, H. G. and Campel, C., Model-Aided Diagnosis of Mechanical Systems: Fundamentals, Detection, Localization, Assesment, Springer-Verlag, Berlin, 1997.

    Google Scholar 

  8. Loparo, K. A., Adams, M. L., Lin, W., Abdel-Magied, M. F., and Afshasi, N., 'Fault detection and diagnosis of rotating machinery', IEEE Transactions on Industrial Electronics 47(5), 2000, 1005–1014.

    Google Scholar 

  9. Dron, J., Rasolofondraibe, L., Couet, C., and Pavan, A., 'Fault detection and monitoring of a ball bearing benchtest and a production machine via autoregressive spectrum analysis', Journal of Sound and Vibration 218(3), 1998, 501–525.

    Google Scholar 

  10. Wang, W. and Wong, A. K., 'Autoregresive model-based gear fault diagnosis', Journal of Vibration and Acoustics 124(2), 2002, 172–179.

    Google Scholar 

  11. Sampaio, R. P. C., Maia, N. M. M., and Silva, J. M. M., 'Damage detection using the frequency-response-function curvature method', Journal of Sound and Vibration 226(5), 1999, 1024–1029.

    Google Scholar 

  12. Worden, K., 'Structural fault detection using a novelty measure', Journal of Sound and Vibration 201(1), 1997, 85–101.

    Google Scholar 

  13. Cornwell, P., Doebling, S. W., and Farrar C. R., 'Application of the strain energy damage detection method to plate-like structures', Journal of Sound and Vibration 224(2), 2000, 359–374.

    Google Scholar 

  14. Cusumano, J. P. and Chatterjee, A., 'Steps towards a qualitative dynamics of damage evolution', International Journal of Solids and Structures 37(44), 2000, 6397–6417.

    Google Scholar 

  15. Chelidze, D., Cusumano, J. P., and Chatterjee, A., 'Dynamical systems approach to damage evolution tracking, part 1: Description and experimental application', Journal of Vibration and Acoustics 124(2), 2002, 250–257.

    Google Scholar 

  16. Cusumano, J. P., Chelidze, D., and Chatterjee, A., 'Dynamical systems approach to damage evolution tracking, part 2: Model-based validation and physical interpretation', Journal of Vibration and Acoustics 124(2), 2002, 258–264.

    Google Scholar 

  17. Chelidze, D. and Cusumano, J. P., 'A dynamical systems approach to failure prognosis', Journal of Vibration and Acoustics 126(1), 2004, 1–7.

    Google Scholar 

  18. Chelidze, D. and Liu, M., 'Dynamical systems approach to fatigue damage identification', Journal of Sound and Vibration, in press.

  19. Sauer, T., Yorke, J. A., and Casdagli, M., 'Embedology', Journal of Statistical Physics 65(3-4), 1991, 579–616.

    Google Scholar 

  20. Fraser, A. M. and Swinney, H. L., 'Independent coordinates for strange attractors from mutual information', Physical Review [section] A 33(2), 1986, 1134–1140.

    Google Scholar 

  21. Kennel, M. B., Brown, R., and Abarbanel, H. D. I., 'Determining embedding dimension for phase-space reconstruction using a geometric construction', Physical Review [section] A 45(6), 1992, 3403–3411.

    Google Scholar 

  22. Berkooz, G., Holmes, P., and Lumley, J. L., 'The proper orthogonal decomposition in the analysis of turbulent flows', Annual Review of Fluid Mechanics 25, 1993, 539–575.

    Google Scholar 

  23. Cusumano, J. P., Sharkady, M. T., and Kimble, B., 'Experimental measurements of dimensionality and spatial coherence in the dynamics of a flexible-beam impact oscillator', Philosophical Transactions of the Royal Society 347, 1994, 421–438.

    Google Scholar 

  24. Feeny, B. F. and Kappagantu, R., 'On the physical interpretation of proper orthogonal modes in vibrations', Journal of Sound and Vibration 211(4), 1998, 607–616.

    Google Scholar 

  25. Chatterjee, A., Cusumano, J. P., and Chelidze, D., 'Optimal tracking of parameter drift in a chaotic system: Experiment and theory', Journal of Sound and Vibration 250(5), 2002, 877–901.

    Google Scholar 

  26. Golub, G. H. and Van Loan, C. F., Matrix Computations, 3rd edn., Johns Hopkins University Press, Baltimore, Maryland, 1996.

    Google Scholar 

  27. Cusumano, J. P. and Kimble, B., 'A stochastic interrogation method for experimental measurements of global dynamics and basin evolution: application to a two-well oscillator', Nonlinear Dynamics 8, 1995, 213–235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chelidze, D. Identifying Multidimensional Damage in a Hierarchical Dynamical System. Nonlinear Dynamics 37, 307–322 (2004). https://doi.org/10.1023/B:NODY.0000045546.02766.ad

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NODY.0000045546.02766.ad

Navigation