Skip to main content
Log in

Basins of Attraction of Periodic Oscillations in Suspension Bridges

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We consider the dynamics of the lowest order transversal vibration mode of a suspension bridge, for which the hangers are treated as one-sided springs, according to the model of Lazer and McKeena [SIAM Review 58, 1990, 537]. We analyze in particular the multi-stability of periodic attractors and the basin of attraction structure in phase space and its dependence with the model parameters. The parameter values used in numerical simulations have been estimated from a number of bridges built in the United States and in the United Kingdom, thus taking into account realistic, yet sometimes simplified, structural, aerodynamical, and physical considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, O. H., von Kármán, T., and Woodruff, G. B., The Failure of the Tacoma Narrows Bridge, Federal Works Agency, Washington, 1941.

    Google Scholar 

  2. Billah, K. Y. and Scanlan, R. H., 'Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks', American Journal of Physics 59, 1991, 118–124.

    Google Scholar 

  3. Lazer, A. C. and McKenna, P. J., 'Large amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis', SIAM Review 58, 1990, 537–578.

    Google Scholar 

  4. Nayfeh, A. H. and Mook, D. T., Nonlinear Oscillations, Wiley-Interscience, New York, 1979.

    Google Scholar 

  5. Aidanpaa, J. O., Shen, H. H., and Gupta, R. B., 'Stability and bifurcations of a stationary state for an impact oscillator', Chaos 4, 1994, 621–630.

    Google Scholar 

  6. Wiercigroch, M. and DeKraker, B., Applied Nonlinear Dynamics and Chaos of Mechanical Systems with Discontinuities, World Scientific, Singapore, 2000.

    Google Scholar 

  7. Wiercigroch, M., 'Modelling of dynamical systems with motion dependent discontinuities', Chaos, Solitons and Fractals 11, 2000, 2429–2442.

    Google Scholar 

  8. Jerrelind, J. and Stensson, A., 'Nonlinear dynamics of parts in engineering systems', Chaos, Solitons and Fractals 11, 2000, 2413–2418.

    Google Scholar 

  9. Heertjes, M. F. and Van De Molengraft, M. J. G., 'Controlling the nonlinear dynamics of a beam system', Chaos, Solitons and Fractals 12, 2001, 49–66.

    Google Scholar 

  10. http://www.vibrationdata.com/Tacoma.htm.

  11. Doole, S. H. and Hogan, S. J., 'A piecewise linear suspension bridge model: Nonlinear dynamics and orbit continuation', Dynamics and Stability of Systems 11, 1996, 19–47.

    Google Scholar 

  12. Doole, S. H. and Hogan, S. J., 'Nonlinear dynamics of the extended Lazer-McKenna bridge oscillation model', Dynamics and Stability of Systems 15, 2000, 43–58.

    Google Scholar 

  13. Zavodney, L. D., Nayfeh, A. H., and Sanchez, N. E., 'Bifurcations and chaos in parametrically excited single-degree-offreedom systems', Nonlinear Dynamics 1, 1990, 1–21.

    Google Scholar 

  14. Freitas, M. S. T. de, Viana, R. L., and Grebogi, C., 'Multistability, basin boundary structure, and chaotic behavior in a suspension bridge model', International Journal of Bifurcation and Chaos 14, 2004, 927–950.

    Google Scholar 

  15. Freitas, M. S. T. de, Viana, R. L., and Grebogi, C., 'Erosion of the safe basin for the transversal oscillations of a suspension bridge', Chaos, Solitons and Fractals 18, 2003, 829–841.

    Google Scholar 

  16. Hartog, D. and Pieter, J., Advanced Strength of Materials, Dover, New York, 1987.

    Google Scholar 

  17. Blevins, R. D., Flow-Induced Vibration, VanNostrand Reinhold, New York, 1997.

    Google Scholar 

  18. Shaw, S. W. and Holmes, P. J., 'A periodically forced piecewise linear oscillator', Journal of Sound and Vibration 90, 1983, 129–155.

    Google Scholar 

  19. Thompson, J. M. T., Bokaian, A. R., and Ghaffari, R., 'Subharmonic resonances and chaotic motions of a bilinear oscillator', I.M.A. Journal of Applied Mathematics 31, 1983, 207–234.

    Google Scholar 

  20. Whiston, G. S., 'The vibro-impact response of a harmonically excited and preloaded one-dimensional linear oscillator', Journal of Sound and Vibration 115, 1987, 303–319.

    Google Scholar 

  21. Cao, Q., Xu, L., Djidjeli, K., Price, W. G., and Twizell, E. H., 'Analysis of period-doubling and chaos of a non-symmetric oscillator with piecewise linearity', Chaos, Solitons and Fractals 12, 2001, 1917–1927.

    Google Scholar 

  22. O'Connor, C., Design of Bridge Superstructures, Wiley, New York, 1971.

    Google Scholar 

  23. Daugherty, R. L. and Ingersoll, A. C., Fluid Dynamics with Engineering Applications, 5th edn., McGraw Hill, New York, 1954.

    Google Scholar 

  24. Shames, I. H., Mechanics of Fluids, 2nd edn., McGraw Hill, New York, 1982.

    Google Scholar 

  25. Thompson, J. M. T., Instabilities and Catastrophes in Science and Engineering, Wiley, New York, 1982.

    Google Scholar 

  26. Morgenthal, G., 'Comparison of Numerical Methods for Bridge-Deck Aerodynamics',M. Phil. Thesis, Cambridge University, Cambridge, UK, 2000.

  27. Lichtenberg, A. J. and Lieberman, M. A., Regular and Chaotic Dynamics, 2nd edn., Springer, New York, 1997.

    Google Scholar 

  28. Feudel, U., Grebogi, C., Hunt, B. R., and Yorke, J. A., 'Map with more than 100 coexisting low-period periodic attractors,' Physical Review E 54, 1996, 71–81.

    Google Scholar 

  29. Feudel, U. and Grebogi, C., 'Multistability and the control of complexity', Chaos 7, 1997, 597–604.

    Google Scholar 

  30. Feudel, U., Grebogi, C., Poon, L., and Yorke, J. A., 'Dynamical properties of a simple mechanical system with a large number of coexisting periodic attractors', Chaos, Solitons and Fractals 9, 1998, 171–180.

    Google Scholar 

  31. McDonald, S. W., Grebogi, C., Ott, E., and Yorke, J. A., 'Final state sensitivity: An obstruction to predictability', Physics Letters A 99, 1983, 415–418.

    Google Scholar 

  32. McDonald, S. W., Grebogi, C., Ott, E., and Yorke, J. A., 'Fractal basin boundaries', Physica D 17, 1985, 125–153.

    Google Scholar 

  33. Pentek, A., Toroczkai, Z., Tel, T., Grebogi, C., and Yorke, J. A., 'Fractal boundaries in open hydrodynamical flows: Signatures of chaotic saddles', Physical Review E 51, 1995, 4076–4088.

    Google Scholar 

  34. Kraut, S., Feudel, U., and Grebogi, C., 'Preference of attractors in noisy multistable systems', Physical Review E 59, 1999, 5253–5260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo L. Viana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Freitas, M.S.T., Viana, R.L. & Grebogi, C. Basins of Attraction of Periodic Oscillations in Suspension Bridges. Nonlinear Dynamics 37, 207–226 (2004). https://doi.org/10.1023/B:NODY.0000044645.69344.ac

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NODY.0000044645.69344.ac

Navigation