Skip to main content
Log in

Basal lamina and the organization of neuromuscular synapses

  • Published:
Journal of Neurocytology

Abstract

Fast chemical synapses are comprised of presynaptic and postsynaptic specializations precisely aligned across a protein-filled synaptic cleft. At the vertebrate neuromuscular junction (NMJ), the synaptic cleft contains a structured form of extracellular matrix known as a basal lamina (BL). Synaptic BL is molecularly differentiated from the BL that covers the extrasynaptic region of the myofiber. This review summarizes current understanding of the morphology, composition, and function of the synaptic BL at the vertebrate NMJ. Considerable evidence supports the conclusion that the synaptic BL organizes and maintains pre- and postsynaptic specializations during development and regeneration, and promotes robust neurotransmission in the adult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AHMARI, S. E., BUCHANAN, J. & SMITH, S. J. (2000) Assembly of presynaptic active zones from cytoplasmic transport packets. Nature Neuroscience 3, 44– 451.

    PubMed  Google Scholar 

  • ANDERSON, M. J. & COHEN, M. W. (1974) Fluorescent staining of acetylcholine receptors in vertebrate skeletal muscle. Journal of Physiology 237, 38–400.

    PubMed  Google Scholar 

  • ANDERSON, M. J. & FAMBROUGH, D. M. (1983) Aggregates of acetylcholine receptors are associated with plaques of a basal lamina heparan sulfate proteoglycan on the surface of skeletal muscle fibers. Journal of Cell Biology 97, 139–1411.

    PubMed  Google Scholar 

  • ANGLISTER, L., EICHLER, J., SZABO, M., HAESAERT, B. & SALPETER, M. M. (1998) 125I-labeled fasciculin 2: A new tool for quantitation of acetylcholinesterase densities at synaptic sites by EM-autoradiography. Journal of Neuroscience Methods 81, 6–71.

    PubMed  Google Scholar 

  • APEL, E. D., GLASS, D. J., MOSCOSO, L. M., YANCOPOULOS, G. D. & SANES, J. R. (1997) Rapsyn is required for MuSK signaling and recruits synaptic components to a MuSK-containing scaffold. Neuron 18, 62–635.

    PubMed  Google Scholar 

  • ARIKAWA-HIRASAWA, E., ROSSI, S. G., ROTUNDO, R. L. & YAMADA, Y. (2002) Absence of acetylcholinesterase at the neuromuscular junctions of perlecan-null mice. Nature Neuroscience 5, 11–123.

    PubMed  Google Scholar 

  • AUMAILLEY, M., WIEDEMANN, H., MANN, K. & TIMPL, R. (1989) Binding of nidogen and the lamininnidogen complex to basement membrane collagen type IV. European Journal of Biochemistry 184, 24–248.

    PubMed  Google Scholar 

  • AVIEZER, D., HECHT, D., SAFRAN, M., EISINGER, M., DAVID, G. & YAYON, A. (1994) Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factorreceptor binding, mitogenesis, and angiogenesis. Cell 79, 100–1013.

    PubMed  Google Scholar 

  • BALICE-GORDON, R. J. & LICHTMAN, J. W. (1990) In vivo visualization of the growth of pre-and postsynaptic elements of neuromuscular junctions in the mouse. Journal of Neuroscience 10, 89–908.

    PubMed  Google Scholar 

  • BANKER, B. Q., HIRST, N. S., CHESTER, C. S. & FOK, R. Y. (1979) Histometric and electron cytochemical study of muscle in the dystrophic mouse. Annals of the New York Academy of Sciences 317, 11–131.

    PubMed  Google Scholar 

  • BARTOL, T. M., JR., LAND, B. R., SALPETER, E. E. & SALPETER, M. M. (1991) Monte Carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophysical Journal 59, 129–1307.

    PubMed  Google Scholar 

  • BATTAGLIA, C., MAYER, U., AUMAILLEY, M. & TIMPL, R. (1992) Basement-membrane heparan sulfate proteoglycan binds to laminin by its heparan sulfate chains and to nidogen by sites in the protein core. European Journal of Biochemistry 208, 35–366.

    PubMed  Google Scholar 

  • BAYNE, E. K., ANDERSON, M. J. & FAMBROUGH, D. M. (1984) Extracellular matrix organization in developing muscle: Correlation with acetylcholine receptor aggregates. Journal of Cell Biology 99, 148–1501.

    PubMed  Google Scholar 

  • BENNETT, M. V. L. (1971) In Fish Physiology (edited by HOAR, W. S. & RANDALL, D. J.) pp. 34–491, New York: Academic Press.

    Google Scholar 

  • BIEDERER, T., SARA, Y., MOZHAYEVA, M., ATASOY, D., LIU, X., KAVALALI, E. T. & SUDHOF, T. C. (2002) SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297, 152–1531.

    PubMed  Google Scholar 

  • BOUDREAU-LARIVIERE, C., CHAN, R. Y., WU, J. & JASMIN, B. J. (2000) Molecular mechanisms underlying the activity-linked alterations in acetylcholinesterase mRNAs in developing versus adult rat skeletal muscles. Journal of Neurochemistry 74, 225–2258.

    PubMed  Google Scholar 

  • BOWE, M. A., DEYST, K. A., LESZYK, J. D. & FALLON, J. R. (1994) Identification and purification of an agrin receptor from Torpedo postsynaptic membranes: A heteromeric complex related to the dystroglycans. Neuron 12, 117–1180.

    PubMed  Google Scholar 

  • BROWN, J. C., WIEDEMANN, H. & TIMPL, R. (1994) Protein binding and cell adhesion properties of two laminin isoforms (AmB1eB2e, AmB1sB2e) from human placenta. Journal of Cell Science 107, 32–338.

    PubMed  Google Scholar 

  • BURDEN, S. J., SARGENT, P. B. & MCMAHAN, U. J. (1979) Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve. Journal of Cell Biology 82, 41–425.

    PubMed  Google Scholar 

  • BURGESON, R. E., CHIQUET, M., DEUTZMANN, R., EKBLOM, P., ENGEL, J., KLEINMAN, H., MARTIN, G. R., MENEGUZZI, G., PAULSSON, M., SANES, J. et al. (1994) A new nomenclature for the laminins. Matrix Biology 14, 20–211.

    PubMed  Google Scholar 

  • BURGESS, R. W., NGUYEN, Q. T., SON, Y. J., LICHTMAN, J. W. & SANES, J. R. (1999) Alternatively spliced isoforms of nerve-and muscle-derived agrin: Their roles at the neuromuscular junction. Neuron 23, 3–44.

    PubMed  Google Scholar 

  • CAJAL, S. R. Y. (1928) In Degeneration and Regeneration of the Nervous System London: Oxford Univ. Press.

    Google Scholar 

  • CAMPANELLI, J. T., ROBERDS, S. L., CAMPBELL, K. P. & SCHELLER, R. H. (1994) A role for dystrophinassociated glycoproteins and utrophin in agrin-induced AChR clustering. Cell 77, 66–674.

    PubMed  Google Scholar 

  • CARLIN, B., JAFFE, R., BENDER, B. & CHUNG, A. E. (1981) Entactin, a novel basal lamina-associated sulfated glycoprotein. Journal of Biological Chemistry 256, 520–5214.

    PubMed  Google Scholar 

  • CHAN, R. Y., BOUDREAU-LARIVIERE, C., ANGUS, L. M., MANKAL, F. A. & JASMIN, B. J. (1999) An intronic enhancer containing an N-box motif is required for synapse-and tissue-specific expression of the acetylcholinesterase gene in skeletal muscle fibers. Proceedings of the National Academy of Science (USA) 96, 462–4632.

    Google Scholar 

  • CHANG, C. C. & LEE, C. Y. (1963) Archives Internationales de Pharmacodynamie et de Therapie 144, 24–257.

    PubMed  Google Scholar 

  • CHEN, L. & KO, C. P. (1994) Extension of synaptic extracellular matrix during nerve terminal sprouting in living frog neuromuscular junctions. Journal of Neuroscience 14, 79–808.

    PubMed  Google Scholar 

  • CHEN, L. L., FOLSOM, D. B. & KO, C. P. (1991) The remodeling of synaptic extracellular matrix and its dynamic relationship with nerve terminals at living frog neuromuscular junctions. Journal of Neuroscience 11, 292–2930.

    PubMed  Google Scholar 

  • CHENG, Y. S., CHAMPLIAUD, M. F., BURGESON, R. E., MARINKOVICH, M. P. & YURCHENCO, P. D. (1997) Self-assembly of laminin isoforms. Journal of Biological Chemistry 272, 3152–31532.

    PubMed  Google Scholar 

  • CHIU, A. Y. & KO, J. (1994) A novel epitope of entactin is present at the mammalian neuromuscular junction. Journal of Neuroscience 14, 280–2817.

    PubMed  Google Scholar 

  • CHIU, A. Y. & SANES, J. R. (1984) Development of basal lamina in synaptic and extrasynaptic portions of embryonic rat muscle. Developmental Biology 103, 45–467.

    PubMed  Google Scholar 

  • CHO, S. I., KO, J., PATTON, B. L., SANES, J. R. & CHIU, A. Y. (1998) Motor neurons and Schwann cells distinguish between synaptic and extrasynaptic isoforms of laminin. Journal of Neurobiology 37, 33–358.

    PubMed  Google Scholar 

  • CHU, G. C., MOSCOSO, L. M., SLIWKOWSKI, M. X. & MERLIE, J. P. (1995) Regulation of the acetylcholine receptor epsilon subunit gene by recombinant ARIA: An in vitro model for transynaptic gene regulation. Neuron 14, 32–339.

    PubMed  Google Scholar 

  • COHEN, I., RIMER, M., LOMO, T. & MCMAHAN, U. J. (1997) Agrin-induced postsynaptic-like apparatus in skeletal muscle fibers in vivo. Molecular and Cellular Neuroscience 9, 23–253.

    PubMed  Google Scholar 

  • COHEN, M. W. & GODFREY, E. W. (1992) Early appearance of and neuronal contribution to agrin-like molecules at embryonic frog nerve-muscle synapses formed in culture.Journal of Neuroscience 12, 298–2992.

    PubMed  Google Scholar 

  • COLOGNATO, H., WINKELMANN, D. A. & YURCHENCO, P. D. (1999) Laminin polymerization induces a receptor-cytoskeleton network. Journal of Cell Biology 145, 61–631.

    PubMed  Google Scholar 

  • COLOGNATO, H. & YURCHENCO, P. D. (1999) The laminin ?2 expressed by dystrophic dy(2J) mice is defective in its ability to form polymers. Current Biology 9, 132–1330.

    PubMed  Google Scholar 

  • CORFAS, G., FALLS, D. L. & FISCHBACH, G. D. (1993) ARIA, a protein that stimulates acetylcholine receptor synthesis, also induces tyrosine phosphorylation of a 185-kDa muscle transmembrane protein. Proceedings of the National Academy of Science (USA) 90, 162– 1628.

    Google Scholar 

  • COTE, P. D., MOUKHLES, H., LINDENBAUM, M. & CARBONETTO, S. (1999) Chimaeric mice deficient in dystroglycans develop muscular dystrophy and have disrupted myoneural synapses. Nature Genetics 23, 33–342.

    PubMed  Google Scholar 

  • DE LA PORTE, S., CHAUBOURT, E., FABRE, F., POULAS, K., CHAPRON, J., EYMARD, B., TZARTOS, S. & KOENIG, J. (1998) Accumulation of acetylcholine receptors is a necessary condition for normal accumulation of acetylcholinesterase during in vitro neuromuscular synaptogenesis. European Journal of Neuroscience 10, 163–1643.

    PubMed  Google Scholar 

  • DECHIARA, T. M., BOWEN, D. C., VALENZUELA, D. M., SIMMONS, M. V., POUEYMIROU, W. T., THOMAS, S., KINETZ, E., COMPTON, D. L., ROJAS, E., PARK, J. S., SMITH, C., DISTEFANO, P. S., GLASS, D. J., BURDEN, S. J. & YANCOPOULOS, G. D. (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85, 50–512.

    PubMed  Google Scholar 

  • DECONINCK, A. E., POTTER, A. C., TINSLEY, J. M., WOOD, S. J., VATER, R., YOUNG, C., METZINGER, L., VINCENT, A., SLATER, C. R. & DAVIES, K. E. (1997) Postsynaptic abnormalities at the neuromuscular junctions of utrophin-deficient mice. Journal of Cell Biology 136, 88–894.

    PubMed  Google Scholar 

  • DENZER, A. J., BRANDENBERGER, R., GESEMANN, M., CHIQUET, M. & RUEGG, M. A. (1997) Agrin binds to the nerve-muscle basal lamina via laminin. Journal of Cell Biology 137, 67–683.

    PubMed  Google Scholar 

  • DENZER, A. J., GESEMANN, M., SCHUMACHER, B. & RUEGG, M. A. (1995) An amino-terminal extension is required for the secretion of chick agrin and its binding to extracellular matrix. Journal of Cell Biology 131, 154–1560.

    PubMed  Google Scholar 

  • DESAKI, J. (1992) Scanning electron microscopical study of skeletal muscle fiber ends in normal and dystrophic mice. Archives of Histology and Cytology 55, 44–452.

    PubMed  Google Scholar 

  • DONGER, C., KREJCI, E., SERRADELL, A. P., EYMARD, B., BON, S., NICOLE, S., CHATEAU, D., GARY, F., FARDEAU, M., MASSOULIE, J. & GUICHENEY, P. (1998) Mutation in the human acetylcholinesteraseassociated collagen gene, COLQ, is responsible for congenital myasthenic syndrome with end-plate acetylcholinesterase deficiency (Type Ic). American Journal of Human Genetics 63, 96–975.

    PubMed  Google Scholar 

  • DURBEEJ, M. & CAMPBELL, K. P. (2002) Muscular dystrophies involving the dystrophin-glycoprotein complex: An overview of current mouse models. Current Opinion in Genetics and Development 12, 34–361.

    PubMed  Google Scholar 

  • DUYSEN, E. G., STRIBLEY, J. A., FRY, D. L., HINRICHS, S. H. & LOCKRIDGE, O. (2002) Rescue of the acetylcholinesterase knockout mouse by feeding a liquid diet; phenotype of the adult acetylcholinesterase deficient mouse. Brain Research. Developmental Brain Research 137, 4–54.

    PubMed  Google Scholar 

  • EHRIG, K., LEIVO, I., ARGRAVES, W. S., RUOSLAHTI, E. & ENGVALL, E. (1990) Merosin, a tissue-specific basement membrane protein, is a laminin-like protein. Proceedings of the National Academy of Science (USA) 87, 326–3268.

    Google Scholar 

  • ENGEL, A. G., LAMBERT, E. H. & GOMEZ, M. R. (1977) A new myasthenic syndrome with end-plate acetylcholinesterase deficiency, small nerve terminals, and reduced acetylcholine release. Annals of Neurology 1, 31–330.

    PubMed  Google Scholar 

  • ENGEL, A. G., LAMBERT, E. H., MULDER, D. M., TORRES, C. F., SAHASHI, K., BERTORINI, T. E. & WHITAKER, J. N. (1982) A newly recognized congenital myasthenic syndrome attributed to a prolonged open time of the acetylcholine-induced ion channel. Annals of Neurology 11, 55–569.

    PubMed  Google Scholar 

  • ENGEL, A. G., LAMBERT, E. H. & SANTA, T. (1973) Study of long-term anticholinesterase therapy. Effects on neuromuscular transmission and on motor end-plate fine structure. Neurology 23, 127–1281.

    PubMed  Google Scholar 

  • FALLS, D. L., ROSEN, K. M., CORFAS, G., LANE, W. S. & FISCHBACH, G. D. (1993) ARIA, a protein that stimulates acetylcholine receptor synthesis, is a member of the neu ligand family. Cell 72, 80–815.

    PubMed  Google Scholar 

  • FENG, G., KREJCI, E., MOLGO, J., CUNNINGHAM, J. M., MASSOULIE, J. & SANES, J. R. (1999) Genetic analysis of collagen Q: Roles in acetylcholinesterase and butyrylcholinesterase assembly and in synaptic structure and function. Journal of Cell Biology 144, 134–1360.

    PubMed  Google Scholar 

  • FERNS, M., HOCH, W., CAMPANELLI, J. T., RUPP, F., HALL, Z. W. & SCHELLER, R. H. (1992) RNAsplicing regulates agrin-mediated acetylcholine receptor clustering activity on cultured myotubes. Neuron 8, 107–1086.

    PubMed  Google Scholar 

  • FOX, J. W., MAYER, U., NISCHT, R., AUMAILLEY, M., REINHARDT, D., WIEDEMANN, H., MANN, K., TIMPL, R., KRIEG, T., ENGEL, J. et al. (1991) Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. The EMBO Journal 10, 313–3146.

    PubMed  Google Scholar 

  • GASSMANN, M., CASAGRANDA, F., ORIOLI, D., SIMON, H., LAI, C., KLEIN, R. & LEMKE, G. (1995) Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378, 39–394.

    PubMed  Google Scholar 

  • GAUTAM, M., NOAKES, P. G., MOSCOSO, L., RUPP, F., SCHELLER, R. H., MERLIE, J. P. & SANES, J. R. (1996) Defective neuromuscular synaptogenesis in agrindeficient mutant mice. Cell 85, 52–535.

    PubMed  Google Scholar 

  • GESEMANN, M., CAVALLI, V., DENZER, A. J., BRANCACCIO, A., SCHUMACHER, B. & RUEGG, M. A. (1996) Alternative splicing of agrin alters its binding to heparin, dystroglycan, and the putative agrin receptor. Neuron 16, 75–767.

    PubMed  Google Scholar 

  • GILBERT, J. J., STEINBERG, M. C. & BANKER, B. Q. (1973) Ultrastructural alterations of the motor end plate in myotonic dystrophy of the mouse (dy2J/dy2J). J Neuropathol. Exp. Neurol. 32, 34–364.

    PubMed  Google Scholar 

  • GISIGER, V. & STEPHENS, H. R. (1983) Asymmetric and globular forms of AChE in slow and fast muscles of 129/ReJ normal and dystrophic mice. Journal of Neurochemistry 41, 91–929.

    PubMed  Google Scholar 

  • GLASS, D. J., BOWEN, D. C., STITT, T. N., RADZIEJEWSKI, C., BRUNO, J., RYAN, T. E., GIES, D. R., SHAH, S., MATTSSON, K., BURDEN, S. J., DISTEFANO, P. S., VALENZUELA, D. M., DECHIARA, T. M. & YANCOPOULOS, G. D. (1996) Agrin acts via a MuSK receptor complex. Cell 85, 51–523.

    PubMed  Google Scholar 

  • GLICKSMAN, M. A. & SANES, J. R. (1983) Differentiation of motor nerve terminals formed in the absence of muscle fibres. Journal of Neurocytology 12, 66–671.

    PubMed  Google Scholar 

  • GODFREY, E. W., NITKIN, R. M., WALLACE, B. G., RUBIN, L. L. & MCMAHAN, U. J. (1984) Components of Torpedo electric organ and muscle that cause aggregation of acetylcholine receptors on cultured muscle cells. Journal of Cell Biology 99, 61–627.

    PubMed  Google Scholar 

  • GOODEARL, A. D., YEE, A. G., SANDROCK, A. W., JR., CORFAS, G. & FISCHBACH, G. D. (1995) ARIAis concentrated in the synaptic basal lamina of the developing chick neuromuscular junction. Journal of Cell Biology 130, 142–1434.

    PubMed  Google Scholar 

  • GRADY, R. M., MERLIE, J. P. & SANES, J. R. (1997) Subtle neuromuscular defects in utrophin-deficient mice. Journal of Cell Biology 136, 87–882.

    PubMed  Google Scholar 

  • GRADY, R. M., ZHOU, H., CUNNINGHAM, J. M., HENRY, M. D., CAMPBELL, K. P. & SANES, J. R. (2000) Maturation and maintenance of the neuromuscular synapse: Genetic evidence for roles of the dystrophin—Glycoprotein complex. Neuron 25, 27–293.

    PubMed  Google Scholar 

  • GREEN, T. L., HUNTER, D. D., CHAN, W., MERLIE, J. P. & SANES, J. R. (1992) Synthesis and assembly of the synaptic cleft protein S-laminin by cultured cells. Journal of Biological Chemistry 267, 201–2022.

    PubMed  Google Scholar 

  • GROW, W. A., FERNS, M. & GORDON, H. (1999) Amechanism for acetylcholine receptor clustering distinct from agrin signaling. Dev Neurosci 21, 43–443.

    PubMed  Google Scholar 

  • HALL, Z. W. & KELLY, R. B. (1971) Enzymatic detachment of endplate acetylcholinesterase from muscle. Nature: New Biology 232, 6–63.

    Google Scholar 

  • HARRIS, D. A., FALLS, D. L., DILL-DEVOR, R. M. & FISCHBACH, G. D. (1988) Acetylcholine receptorinducing factor from chicken brain increases the level of mRNA encoding the receptor alpha subunit. Proceedings of the National Academy of Science (USA) 85, 198–1987.

    Google Scholar 

  • HAYASHI, Y. K., CHOU, F. L., ENGVALL, E., OGAWA, M., MATSUDA, C., HIRABAYASHI, S., YOKOCHI, K., ZIOBER, B. L., KRAMER, R. H., KAUFMAN, S. J., OZAWA, E., GOTO, Y., NONAKA, I., TSUKAHARA, T., WANG, J. Z., HOFFMAN, E. P. & ARAHATA, K. (1998) Mutations in the integrin ?7 gene cause congenital myopathy. Nature Genetics 19, 9–97.

    PubMed  Google Scholar 

  • HEREMANS, A., DE COCK, B., CASSIMAN, J. J., VAN DEN BERGHE, H. & DAVID, G. (1990) The core protein of the matrix-associated heparan sulfate proteoglycan binds to fibronectin. Journal of Biological Chemistry 265, 871–8724.

    PubMed  Google Scholar 

  • HOCH, W., CAMPANELLI, J. T., HARRISON, S. & SCHELLER, R. H. (1994) Structural domains of agrin required for clustering of nicotinic acetylcholine receptors. The EMBO Journal 13, 281–2821.

    PubMed  Google Scholar 

  • HOLMES, W. E., SLIWKOWSKI, M. X., AKITA, R. W., HENZEL, W. J., LEE, J., PARK, J. W., YANSURA, D., ABADI, N., RAAB, H., LEWIS, G. D. et al. (1992) Identification of heregulin, a specific activator of p185erbB2. Science 256, 120–1210.

    PubMed  Google Scholar 

  • HSIEH, J. C., WU, C. & CHUNG, A. E. (1994) The binding of fibronectin to entactin is mediated through the 29 kDa amino terminal fragment of fibronectin and the G2 domain of entactin. Biochemical and Biophysical Research Communications 199, 150–1517.

    PubMed  Google Scholar 

  • HUBATSCH, D. A. & JASMIN, B. J. (1997) Mechanical stimulation increases expression of acetylcholinesterase in cultured myotubes. Am Journal of Physiology 273, C200–2009.

    Google Scholar 

  • HUDSON, B. G., REEDERS, S. T. & TRYGGVASON, K. (1993) Type IV collagen: Structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. Journal of Biological Chemistry 268, 2603–26036.

    PubMed  Google Scholar 

  • HUNTER, D. D., PORTER, B. E., BULOCK, J. W., ADAMS, S. P., MERLIE, J. P. & SANES, J. R. (1989a) Primary sequence of a motor neuron-selective adhesive site in the synaptic basal lamina protein S-laminin. Cell 59, 90–913.

    PubMed  Google Scholar 

  • HUNTER, D. D., SHAH, V., MERLIE, J. P. & SANES, J. R. (1989b) A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction. Nature 338, 22–234.

    PubMed  Google Scholar 

  • HUTCHINSON, D. O., WALLS, T. J., NAKANO, S., CAMP, S., TAYLOR, P., HARPER, C. M., GROOVER, R. V., PETERSON, H. A., JAMIESON, D. G. & ENGEL, A. G. (1993) Congenital endplate acetylcholinesterase deficiency. Brain 116, 63–653.

    PubMed  Google Scholar 

  • INOUE, A. & SANES, J. R. (1997) Lamina-specific connectivity in the brain: Regulation by N-cadherin, neurotrophins, and glycoconjugates. Science 276, 142– 1431.

    PubMed  Google Scholar 

  • JACOBSON, C., COTE, P. D., ROSSI, S. G., ROTUNDO, R. L. & CARBONETTO, S. (2001) The dystroglycan complex is necessary for stabilization of acetylcholine receptor clusters at neuromuscular junctions and formation of the synaptic basement membrane. Journal of Cell Biology 152, 43–450.

    PubMed  Google Scholar 

  • JACOBSON, C., MONTANARO, F., LINDENBAUM, M., CARBONETTO, S. & FERNS, M. (1998) ?-Dystroglycan functions in acetylcholine receptor aggregation but is not a coreceptor for agrin-MuSK signaling. Journal of Neuroscience 18, 634–6348.

    PubMed  Google Scholar 

  • JASMIN, B. J., LEE, R. K. & ROTUNDO, R. L. (1993) Compartmentalization of acetylcholinesterase mRNA and enzyme at the vertebrate neuromuscular junction. Neuron 11, 46–477.

    PubMed  Google Scholar 

  • JESSELL, T. M., SIEGEL, R. E. & FISCHBACH, G. D. (1979) Induction of acetylcholine receptors on cultured skeletal muscle by a factor extracted from brain and spinal cord. Proceedings of the National Academy of Science (USA) 76, 539–5401.

    Google Scholar 

  • JO, S. A. & BURDEN, S. J. (1992) Synaptic basal lamina contains a signal for synapse-specific transcription. Development 115, 67–680.

    PubMed  Google Scholar 

  • JO, S. A., ZHU, X., MARCHIONNI, M. A. & BURDEN, S. J. (1995) Neuregulins are concentrated at nerve-muscle synapses and activate ACh-receptor gene expression. Nature 373, 15–161.

    PubMed  Google Scholar 

  • JONES, G., MEIER, T., LICHTSTEINER, M., WITZEMANN, V., SAKMANN, B. & BRENNER, H. R. (1997) Induction by agrin of ectopic and functional postsynaptic-like membrane in innervated muscle. Proceedings of the National Academy of Science (USA) 94, 265–2659.

    Google Scholar 

  • KAUPMANN, K., HEIMANN, P. & JOCKUSCH, H. (1988) Dolichos biflorus agglutinin receptors in mouse muscle. I. Developmental expression in relation to synaptic acetylcholinesterase and to neuromuscular disease. European Journal of Cell Biology 46, 41–418.

    PubMed  Google Scholar 

  • KAUPMANN, K. & JOCKUSCH, H. (1988) Dolichos biflorus agglutinin receptors in mouse muscle. II. Biochemical properties in relation to molecular forms of acetylcholinesterase. European Journal of Cell Biology 46, 41–424.

    PubMed  Google Scholar 

  • KO, C. P. (1987) Alectin, peanut agglutinin, as a probe for the extracellular matrix in living neuromuscular junctions. Journal of Neurocytology 16, 56–576.

    PubMed  Google Scholar 

  • KOHFELDT, E., SASAKI, T., GOHRING, W. & TIMPL, R. (1998) Nidogen-2: A new basement membrane protein with diverse binding properties. Journal of Molecular Biology 282, 9–109.

    PubMed  Google Scholar 

  • LANDER, A. D., FUJII, D. K. & REICHARDT, L. F. (1985) Purification of a factor that promotes neurite outgrowth: Isolation of laminin and associated molecules. Journal of Cell Biology 101, 89–913.

    PubMed  Google Scholar 

  • LEE, K. F., SIMON, H., CHEN, H., BATES, B., HUNG, M. C. & HAUSER, C. (1995) Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378, 39–398.

    PubMed  Google Scholar 

  • LEGAY, C. (2000) Why so many forms of acetylcholinesterase? Microscopy Research and Technique 49, 5–72.

    PubMed  Google Scholar 

  • LEIVO, I. & ENGVALL, E. (1988) Merosin, a protein specific for basement membranes of Schwann cells, striated muscle, and trophoblast, is expressed late in nerve and muscle development. Proceedings of the National Academy of Science (USA) 85, 154–1548.

    Google Scholar 

  • LEMKE, G. (1996) Neuregulins in development. Molecular and Cellular Neuroscience 7, 24–262.

    PubMed  Google Scholar 

  • LEMKE, G. E. & BROCKES, J. P. (1984) Identification and purification of glial growth factor. Journal of Neuroscience 4, 7–83.

    PubMed  Google Scholar 

  • LEVI, A. D., BUNGE, R. P., LOFGREN, J. A., MEIMA, L., HEFTI, F., NIKOLICS, K. & SLIWKOWSKI, M. X. (1995) The influence of heregulins on human Schwann cell proliferation. Journal of Neuroscience 15, 132–1340.

    PubMed  Google Scholar 

  • LIN, W., BURGESS, R. W., DOMINGUEZ, B., PFAFF, S. L., SANES, J. R. & LEE, K. F. (2001) Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410, 105–1064.

    PubMed  Google Scholar 

  • LOEB, J. A. & FISCHBACH, G. D. (1995) ARIA can be released from extracellular matrix through cleavage of a heparin-binding domain. Journal of Cell Biology 130, 12–135.

    PubMed  Google Scholar 

  • LWEBUGA-MUKASA, J. S., LAPPI, S. & TAYLOR, P. (1976) Molecular forms of acetylcholinesterase from Torpedo californica: Their relationship to synaptic membranes. Biochemistry 15, 142–1434.

    PubMed  Google Scholar 

  • MAGILL-SOLC, C. & MCMAHAN, U. J. (1990) Synthesis and transport of agrin-like molecules in motor neurons. Journal of Experimental Biology 153, –10.

    Google Scholar 

  • MARCHIONNI, M. A., GOODEARL, A. D., CHEN, M. S., BERMINGHAM-MCDONOGH, O., KIRK, C., HENDRICKS, M., DANEHY, F., MISUMI, D., SUDHALTER, J., KOBAYASHI, K. et al. (1993) Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 362, 31– 318.

    PubMed  Google Scholar 

  • MARQUES, M. J., CONCHELLO, J. A. & LICHTMAN, J. W. (2000) From plaque to pretzel: Fold formation and acetylcholine receptor loss at the developing neuromuscular junction. Journal of Neuroscience 20, 366–3675.

    PubMed  Google Scholar 

  • MARSHALL, L. M., SANES, J. R. & MCMAHAN, U. J. (1977) Reinnervation of original synaptic sites on muscle fiber basement membrane after disruption of the muscle cells. Proceedings of the National Academy of Science (USA) 74, 307–3077.

    Google Scholar 

  • MARTIN, P. T., ETTINGER, A. J. & SANES, J. R. (1995) A synaptic localization domain in the synaptic cleft protein laminin ?2 (s-laminin). Science 269, 41–416.

    PubMed  Google Scholar 

  • MARTIN, P. T., KAUFMAN, S. J., KRAMER, R. H. & SANES, J. R. (1996) Synaptic integrins in developing, adult, and mutant muscle: Selective association of ?1, ?7A, and ?7B integrins with the neuromuscular junction. Developmental Biology 174, 12–139.

    PubMed  Google Scholar 

  • MARTIN, P. T. & SANES, J. R. (1995) Role for a synapsespecific carbohydrate in agrin-induced clustering of acetylcholine receptors. Neuron 14, 74–754.

    PubMed  Google Scholar 

  • MARTINOU, J. C., FALLS, D. L., FISCHBACH, G. D. & MERLIE, J. P. (1991) Acetylcholine receptor-inducing activity stimulates expression of the ?-subunit gene of the muscle acetylcholine receptor. Proceedings of the National Academy of Science (USA) 88, 766–7673.

    Google Scholar 

  • MAULET, Y., CAMP, S., GIBNEY, G., RACHINSKY, T. L., EKSTROM, T. J. & TAYLOR, P. (1990) Single gene encodes glycophospholipid-anchored and asymmetric acetylcholinesterase forms: Alternative coding exons contain inverted repeat sequences. Neuron 4, 28–301.

    PubMed  Google Scholar 

  • MAYER, U., SAHER, G., FASSLER, R., BORNEMANN, A., ECHTERMEYER, F., VON DER MARK, H., MIOSGE, N., POSCHL, E. & VON DER MARK, K. (1997) Absence of integrin ?7 causes a novel form of muscular dystrophy. Nature Genetics 17, 31–323.

    PubMed  Google Scholar 

  • MCMAHAN, U. J. (1990) The agrin hypothesis. Cold Spring Harbor Symposium on Quantitative Biology 55, 40–418.

    Google Scholar 

  • MCMAHAN, U. J., HORTON, S. E., WERLE, M. J., HONIG, L. S., KROGER, S., RUEGG, M. A. & ESCHER, G. (1992) Agrin isoforms and their role in synaptogenesis. Current Opinion in Cell Biology 4, 86–874.

    PubMed  Google Scholar 

  • MCMAHAN, U. J., SANES, J. R. & MARSHALL, L. M. (1978) Cholinesterase is associated with the basal lamina at the neuromuscular junction. Nature 271, 17–174.

    PubMed  Google Scholar 

  • MEIER, T., MARANGI, P. A., MOLL, J., HAUSER, D. M., BRENNER, H. R. & RUEGG, M. A. (1998) A minigene of neural agrin encoding the laminin-binding and acetylcholine receptor-aggregating domains is sufficient to induce postsynaptic differentiation in muscle fibres. European Journal of Neuroscience 10, 314–3152.

    PubMed  Google Scholar 

  • MEYER, D. & BIRCHMEIER, C. (1995) Multiple essential functions of neuregulin in development. Nature 378, 38–390.

    PubMed  Google Scholar 

  • MICHEL, R. N., VU, C. Q., TETZLAFF, W. & JASMIN, B. J. (1994) Neural regulation of acetylcholinesterasemRNAs at mammalian neuromuscular synapses. Journal of Cell Biology 127, 106–1069.

    PubMed  Google Scholar 

  • MILONE, M., WANG, H. L., OHNO, K., FUKUDOME, T., PRUITT, J. N., BREN, N., SINE, S. M. & ENGEL, A. G. (1997) Slow-channel myasthenic syndrome caused by enhanced activation, desensitization, and agonist binding affinity attributable to mutation in the M2 domain of the acetylcholine receptor alpha subunit. Journal of Neuroscience 17, 565–5665.

    PubMed  Google Scholar 

  • MINER, J. H. & SANES, J. R. (1994) Collagen IV ?3, ?4, and ?5 chains in rodent basal laminae: Sequence, distribution, association with laminins, and developmental switches. Journal of Cell Biology 127, 87–891.

    PubMed  Google Scholar 

  • MIOSGE, N., KLENCZAR, C., HERKEN, R., WILLEM, M. & MAYER, U. (1999) Organization of the myotendinous junction is dependent on the presence of alpha7beta1 integrin. Laboratory Investigation 79, 159–1599.

    PubMed  Google Scholar 

  • MIYAGOE-SUZUKI, Y., NAKAGAWA, M. & TAKEDA, S. (2000) Merosin and congenital muscular dystrophy. Microscopy Research and Technique 48, 18–191.

    PubMed  Google Scholar 

  • MORRIS, J. K., LIN, W., HAUSER, C., MARCHUK, Y., GETMAN, D. & LEE, K. F. (1999) Rescue of the cardiac defect in ErbB2 mutant mice reveals essential roles of ErbB2 in peripheral nervous system development. Neuron 23, 27–283.

    PubMed  Google Scholar 

  • MOSCOSO, L. M., CHU, G. C., GAUTAM, M., NOAKES, P. G., MERLIE, J. P. & SANES, J. R. (1995) Synapseassociated expression of an acetylcholine receptorinducing protein, ARIA/heregulin, and its putative receptors, ErbB2 and ErbB3, in developing mammalian muscle. Developmental Biology 172, 15–169.

    PubMed  Google Scholar 

  • MYLLYHARJU, J. & KIVIRIKKO, K. I. (2001) Collagens and collagen-related diseases. Annals of Medicine 33, – 21.

    PubMed  Google Scholar 

  • NAWROTZKI, R., WILLEM, M., MIOSGE, N., BRINKMEIER, H. & MAYER, U. (2003) Defective integrin switch and matrix composition at ?7-deficient myotendinous junctions precede the onset of muscular dystrophy in mice. Human Molecular Genetics 12, 48–495.

    PubMed  Google Scholar 

  • NISHIMUNE, H., SANES, J. R. & CARLSON, S. S. (2002) Synaptic laminins bind presynaptic calcium channels to align active zones in nerve terminals. Program No. 28.6. AbstractViewer.Washington, DC: Society for Neuroscience CD-ROM.

  • NITKIN, R. M., SMITH, M. A., MAGILL, C., FALLON, J. R., YAO, Y. M., WALLACE, B. G. & MCMAHAN, U. J. (1987) Identification of agrin, a synaptic organizing protein fromTorpedo electric organ. Journal of Cell Biology 105, 247–2478.

    PubMed  Google Scholar 

  • NOAKES, P. G., GAUTAM, M., MUDD, J., SANES, J. R. & MERLIE, J. P. (1995) Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin ?2. Nature 374, 25–262.

    PubMed  Google Scholar 

  • OHNO, K. & ENGEL, A. G. (2002) Congenital myasthenic syndromes: Genetic defects of the neuromuscular junction. Current Neurology and Neuroscience Reports 2, 7– 88.

    PubMed  Google Scholar 

  • PARKHOMOVSKIY, N., KAMMESHEIDT, A. & MARTIN, P. T. (2000) N-acetyllactosamine and the CT carbohydrate antigen mediate agrin-dependentactivation of MuSK and acetylcholine receptor clustering in skeletal muscle. Molecular and Cellular Neuroscience 15, 38–397.

    PubMed  Google Scholar 

  • PATTON, B. L. (2000) Laminins of the neuromuscular system. Microscopy Research and Technique 51, 24–261.

    PubMed  Google Scholar 

  • PATTON, B. L., CHIU, A. Y. & SANES, J. R. (1998) Synaptic laminin prevents glial entry into the synaptic cleft. Nature 393, 69–701.

    PubMed  Google Scholar 

  • PATTON, B. L., CUNNINGHAM, J. M., THYBOLL, J., KORTESMAA, J., WESTERBLAD, H., EDSTROM, L., TRYGGVASON, K. & SANES, J. R. (2001) Properly formed but improperly localized synaptic specializations in the absence of laminin ?4. Nature Neuroscience 4, 59–604.

    PubMed  Google Scholar 

  • PATTON, B. L., MINER, J. H., CHIU, A. Y. & SANES, J. R. (1997) Distribution and function of laminins in the neuromuscular system of developing, adult, and mutant mice. Journal of Cell Biology 139, 150–1521.

    PubMed  Google Scholar 

  • PAULSSON, M., AUMAILLEY, M., DEUTZMANN, R., TIMPL, R., BECK, K. & ENGEL, J. (1987) Lamininnidogen complex. Extraction with chelating agents and structural characterization. European Journal of Biochemistry 166, 1–19.

    PubMed  Google Scholar 

  • PAULSSON, M., DEUTZMANN, R., DZIADEK, M., NOWACK, H., TIMPL, R., WEBER, S. & ENGEL, J. (1986) Purification and structural characterization of intact and fragmented nidogen obtained from a tumor basement membrane. European Journal of Biochemistry 156, 46–478.

    PubMed  Google Scholar 

  • PELES, E., BACUS, S. S., KOSKI, R. A., LU, H. S., WEN, D., OGDEN, S. G., LEVY, R. B. & YARDEN, Y. (1992) Isolation of the neu/HER-2 stimulatory ligand: A 44 kd glycoprotein that induces differentiation ofmammarytumor cells. Cell 69, 20–216.

    PubMed  Google Scholar 

  • PENG, H. B., ALI, A. A., DAGGETT, D. F., RAUVALA, H., HASSELL, J. R. & SMALHEISER, N. R. (1998) The relationship between perlecan and dystroglycan and its implication in the formation of the neuromuscular junction. Cell Adhesion and Communication 5 47– 489.

    PubMed  Google Scholar 

  • PENG, H. B., XIE, H., ROSSI, S. G. & ROTUNDO, R. L. (1999) Acetylcholinesterase clustering at the neuromuscular junction involves perlecan and dystroglycan. Journal of Cell Biology 145, 91–921.

    PubMed  Google Scholar 

  • PORTER, B. E., WEIS, J. & SANES, J. R. (1995) A motoneuron-selective stop signal in the synaptic protein S-laminin. Neuron 14, 54–559.

    PubMed  Google Scholar 

  • PORTER, S., CLARK, M. B., GLASER, L. & BUNGE, R. P. (1986) Schwann cells stimulated to proliferate in the absence of neurons retain full functional capability. Journal of Neuroscience 6, 307–3078.

    PubMed  Google Scholar 

  • POSCHL, E., FOX, J. W., BLOCK, D., MAYER, U. & TIMPL, R. (1994) Two non-contiguous regions contribute to nidogen binding to a single EGF-like motif of the laminin gamma 1 chain. The EMBO Journal 13, 374–3747.

    PubMed  Google Scholar 

  • POSCHL, E., MAYER, U., STETEFELD, J., BAUMGARTNER, R., HOLAK, T. A., HUBER, R. & TIMPL, R. (1996) Site-directed mutagenesis and structural interpretation of the nidogen binding site of the laminin gamma1 chain. The EMBO Journal 15, 515–5159.

    PubMed  Google Scholar 

  • REINHARDT, D., MANN, K., NISCHT, R., FOX, J. W., CHU, M. L., KRIEG, T. & TIMPL, R. (1993) Mapping of nidogen binding sites for collagen type IV, heparan sulfate proteoglycan, and zinc. Journal of Biological Chemistry 268, 1088–10887.

    PubMed  Google Scholar 

  • REIST, N. E., WERLE, M. J. & MCMAHAN, U. J. (1992) Agrin released by motor neurons induces the aggregation of acetylcholine receptors at neuromuscular junctions. Neuron 8, 86–868.

    PubMed  Google Scholar 

  • RIBERA, J., ESQUERDA, J. E. & COMELLA, J. X. (1987) Phylogenetic polymorphism on lectin binding to junctional and non-junctional basal lamina at the vertebrate neuromuscular junction. Histochemistry 87, 30–307.

    PubMed  Google Scholar 

  • RIMER, M., COHEN, I., LOMO, T., BURDEN, S. J. & MCMAHAN, U. J. (1998) Neuregulins and erbB receptors at neuromuscular junctions and at agrin-induced postsynaptic-like apparatus in skeletal muscle. Molecular and Cellular Neuroscience 12, –15.

    PubMed  Google Scholar 

  • RIMER, M., MATHIESEN, I., LOMO, T. & MCMAHAN, U. J. (1997) ?-AChR/ ?-AChR switch at agrin-induced postsynaptic-like apparatus in skeletal muscle. Molecular and Cellular Neuroscience 9, 25–263.

    PubMed  Google Scholar 

  • ROBBINS, N. (1988) In Nerve-Target Cell Trophic Communication (edited by FERNANDEZ, H.) pp. 19–215. Boca Raton: CRC Press.

    Google Scholar 

  • ROGERS, A. W., DARZYNKIEWICZ, Z., SALPETER, M. M., OSTROWSKI, K. & BARNARD, E. A. (1969) Quantitative studies on enzymes in structures in striated muscles by labeled inhibitor methods. I. The number of acetylcholinesterase molecules and of other DFP-reactive sites at motor endplates, measured by radioautography. Journal of Cell Biology 41, 66–685.

    PubMed  Google Scholar 

  • ROSENBERRY, T. I. (1975) Advances in Enzymology 43, 103-.

    Google Scholar 

  • ROSENBERRY, T. L. & RICHARDSON, J. M. (1977) Structure of 18S and 14S acetylcholinesterase. Identification of collagen-like subunits that are linked by disulfide bonds to catalytic subunits. Biochemistry 16, 355–3558.

    PubMed  Google Scholar 

  • ROSSI, S. G. & ROTUNDO, R. L. (1992) Cell surface acetylcholinesterase molecules on multinucleated myotubes are clustered over the nucleus of origin. Journal of Cell Biology 119, 165–1667.

    PubMed  Google Scholar 

  • RUEGG, M. A., TSIM, K. W., HORTON, S. E., KROGER, S., ESCHER, G., GENSCH, E. M. & MCMAHAN, U. J. (1992) The agrin gene codes for a family of basal lamina proteins that differ in function and distribution. Neuron 8, 69–699.

    PubMed  Google Scholar 

  • RUOSLAHTI, E. & YAMAGUCHI, Y. (1991) Proteoglycans as modulators of growthfactor activities. Cell 64, 86–869.

    PubMed  Google Scholar 

  • RUPP, F., PAYAN, D. G., MAGILL-SOLC, C., COWAN, D. M. & SCHELLER, R. H. (1991) Structure and expression of a rat agrin. Neuron 6, 81–823.

    PubMed  Google Scholar 

  • SALPETER, M. M. (1969) Electron microscope radioautography as a quantitative tool in enzyme cytochemistry. II. The distribution of DFP-reactive sties at motor endplates of a vertebrate twitch muscle. Journal of Cell Biology 42, 12–134.

    PubMed  Google Scholar 

  • SALPETER, M. M., ROGERS, A. W., KASPRZAK, H. & MCHENRY, F. A. (1978) Acetylcholinesterase in the fast extraocular muscle of the mouse by light and electron microscope autoradiography. Journal of Cell Biology 78, 27–285.

    PubMed  Google Scholar 

  • SANDROCK, A. W., JR., DRYER, S. E., ROSEN, K. M., GOZANI, S. N., KRAMER, R., THEILL, L. E. & FISCHBACH, G. D. (1997) Maintenance of acetylcholine receptor number by neuregulins at the neuromuscular junction in vivo. Science 276, 59–603.

    PubMed  Google Scholar 

  • SANDROCK, A. W., JR., GOODEARL, A. D., YIN, Q. W., CHANG, D. & FISCHBACH, G. D. (1995) ARIA is concentrated in nerve terminals at neuromuscular junctions and at other synapses. Journal of Neuroscience 15, 612–6136.

    PubMed  Google Scholar 

  • SANES, J. R. (2003) The basement membrane/basal lamina of skeletal muscle. Journal of Biological Chemistry 29, 29.

    Google Scholar 

  • SANES, J. R. & CHENEY, J. M. (1982) Lectin binding reveals a synapse-specific carbohydrate in skeletal muscle. Nature 300, 64–647.

    PubMed  Google Scholar 

  • SANES, J. R., ENGVALL, E., BUTKOWSKI, R. & HUNTER, D. D. (1990) Molecular heterogeneity of basal laminae: Isoforms of laminin and collagen IV at the neuromuscular junction and elsewhere. Journal of Cell Biology 111, 168–1699.

    PubMed  Google Scholar 

  • SANES, J. R. & HALL, Z. W. (1979) Antibodies that bind specifically to synaptic sites on muscle fiber basal lamina. Journal of Cell Biology 83, 35–370.

    PubMed  Google Scholar 

  • SANES, J. R. & LAWRENCE, J. C., JR. (1983) Activitydependent accumulation of basal lamina by cultured rat myotubes. Developmental Biology 97, 12–136.

    PubMed  Google Scholar 

  • SANES, J. R. & LICHTMAN, J. W. (1999) Development of the vertebrate neuromuscular junction. Annual Review of Neuroscience 22, 38–442.

    PubMed  Google Scholar 

  • SANES, J. R., MARSHALL, L. M. & MCMAHAN, U. J. (1978) Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites. Journal of Cell Biology 78, 17–198.

    PubMed  Google Scholar 

  • SANES, J. R., SCHACHNER, M. & COVAULT, J. (1986) Expression of several adhesive macromolecules (NCAM, L1, J1, NILE, uvomorulin, laminin, fibronectin, and a heparan sulfate proteoglycan) in embryonic, adult, and denervated adult skeletal muscle. Journal of Cell Biology 102, 42–431.

    PubMed  Google Scholar 

  • SCHAEFFER, L., DE KERCHOVE D'EXAERDE, A. & CHANGEUX, J. P. (2001) Targeting transcription to the neuromuscular synapse. Neuron 31, 1–22.

    PubMed  Google Scholar 

  • SCHEIFFELE, P., FAN, J., CHOIH, J., FETTER, R. & SERAFINI, T. (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 65–669.

    PubMed  Google Scholar 

  • SCOTT, L. J., BACOU, F. & SANES, J. R. (1988) Asynapsespecific carbohydrate at the neuromuscular junction: Association with both acetylcholinesterase and a glycolipid. Journal of Neuroscience 8, 93–944.

    PubMed  Google Scholar 

  • SCOTT, L. J., BALSAMO, J., SANES, J. R. & LILIEN, J. (1990) Synaptic localization and neural regulation of an N-acetylgalactosaminyl transferase in skeletal muscle. Journal of Neuroscience 10, 34–350.

    PubMed  Google Scholar 

  • SILBERSTEIN, L., INESTROSA, N. C. & HALL, Z. W. (1982) Aneural muscle cell cultures make synaptic basal lamina components. Nature 295, 14–145.

    PubMed  Google Scholar 

  • SON, Y. J., PATTON, B. L. & SANES, J. R. (1999) Induction of presynaptic differentiation in cultured neurons by extracellular matrix components. European Journal of Neuroscience 11, 345–3467.

    PubMed  Google Scholar 

  • SUGIYAMA, J., BOWEN, D. C. & HALL, Z. W. (1994) Dystroglycan binds nerve and muscle agrin. Neuron 13, 10–115.

    PubMed  Google Scholar 

  • SUNDERLAND, W. J., SON, Y. J., MINER, J. H., SANES, J. R. & CARLSON, S. S. (2000) The presynaptic calcium Synaptic basal lamina 903 channel is part of a transmembrane complex linking a synaptic laminin (?4?2?1) with non-erythroid spectrin. Journal of Neuroscience 20, 100–1019.

    PubMed  Google Scholar 

  • TIMPL, R. & BROWN, J. C. (1996) Supramolecular assembly of basement membranes. Bioessays 18, 12–132.

    PubMed  Google Scholar 

  • TIMPL, R., FUJIWARA, S., DZIADEK, M., AUMAILLEY, M., WEBER, S. & ENGEL, J. (1984) Laminin, proteoglycan, nidogen and collagen IV: Structural models and molecular interactions. Ciba Foundation Symposium 108, 2–43.

    PubMed  Google Scholar 

  • TIMPL, R., ROHDE, H., ROBEY, P. G., RENNARD, S. I., FOIDART, J. M. & MARTIN, G. R. (1979) Laminin—a glycoprotein from basement membranes. Journal of Biological Chemistry 254, 993–9937.

    PubMed  Google Scholar 

  • TRINIDAD, J. C., FISCHBACH, G. D. & COHEN, J. B. (2000) The Agrin/MuSK signaling pathway is spatially segregated from the neuregulin/ErbB receptor signaling pathway at the neuromuscular junction. Journal of Neuroscience 20, 876–8770.

    PubMed  Google Scholar 

  • TSEN, G., HALFTER, W., KROGER, S. & COLE, G. J. (1995) Agrin is a heparan sulfate proteoglycan. Journal of Biological Chemistry 270, 339–3399.

    PubMed  Google Scholar 

  • TSIM, K. W., RUEGG, M. A., ESCHER, G., KROGER, S. & MCMAHAN, U. J. (1992) cDNA that encodes active agrin. Neuron 8, 67–689.

    PubMed  Google Scholar 

  • UNGUEZ, G. A. & ZAKON, H. H. (1998) Phenotypic conversion of distinct muscle fiber populations to electrocytes in a weakly electric fish. Journal of Comparative Neurology 399, 2–34.

    PubMed  Google Scholar 

  • USDIN, T. B. & FISCHBACH, G. D. (1986) Purification and characterization of a polypeptide from chick brain that promotes the accumulation of acetylcholine receptors in chick myotubes. Journal of Cell Biology 103, 49– 507.

    PubMed  Google Scholar 

  • VACHON, P. H., XU, H., LIU, L., LOECHEL, F., HAYASHI, Y., ARAHATA, K., REED, J. C., WEWER, U. M. & ENGVALL, E. (1997) Integrins ?7?1 in muscle function and survival. Disrupted expression in merosindeficient congenital muscular dystrophy. Journal of Clinical Investigation 100, 187–1881.

    PubMed  Google Scholar 

  • WALLACE, B. G. (1989) Agrin-induced specializations contain cytoplasmic, membrane, and extracellular matrixassociated components of the postsynaptic apparatus. Journal of Neuroscience 9, 129–1302.

    PubMed  Google Scholar 

  • WEN, D., PELES, E., CUPPLES, R., SUGGS, S. V., BACUS, S. S., LUO, Y., TRAIL, G., HU, S., SILBIGER, S. M., LEVY, R. B. et al. (1992) Neu differentiation factor: A transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit. Cell 69, 55–572.

    PubMed  Google Scholar 

  • WILLEM, M., MIOSGE, N., HALFTER, W., SMYTH, N., JANNETTI, I., BURGHART, E., TIMPL, R. & MAYER, U. (2002) Specific ablation of the nidogenbinding site in the laminin ? 1 chain interferes with kidney and lung development. Development 129, 271–2722.

    PubMed  Google Scholar 

  • WOOD, S. J. & SLATER, C. R. (2001) Safety factor at the neuromuscular junction. Progress in Neurobiology 64, 39–429.

    PubMed  Google Scholar 

  • XIE, W., STRIBLEY, J. A., CHATONNET, A., WILDER, P. J., RIZZINO, A., MCCOMB, R. D., TAYLOR, P., HINRICHS, S. H. & LOCKRIDGE, O. (2000) Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase. Journal of Pharmacology and Experimental Therapeutics 293, 89–902.

    PubMed  Google Scholar 

  • XU, R. & SALPETER, M. M. (1997) Acetylcholine receptors in innervated muscles of dystrophicmdxmice degrade as after denervation. Journal of Neuroscience 17, 819–8200.

    PubMed  Google Scholar 

  • YAMAGATA, M., HERMAN, J. P. & SANES, J. R. (1995) Lamina-specific expression of adhesion molecules in developing chick optic tectum. Journal of Neuroscience 15, 455–4571.

    PubMed  Google Scholar 

  • YANG, X., ARBER, S., WILLIAM, C., LI, L., TANABE, Y., JESSELL, T. M., BIRCHMEIER, C. & BURDEN, S. J. (2001) Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30, 39–410.

    PubMed  Google Scholar 

  • YANG, X., KUO, Y., DEVAY, P., YU, C. & ROLE, L. (1998) Acysteine-rich isoform of neuregulin controls the level of expression of neuronal nicotinic receptor channels during synaptogenesis. Neuron 20, 25–270.

    PubMed  Google Scholar 

  • YANG, X., LI, W., PRESCOTT, E. D., BURDEN, S. J. & WANG, J. C. (2000) DNAtopoisomerase IIbeta and neural development. Science 287, 13–134.

    PubMed  Google Scholar 

  • YURCHENCO, P. D. & CHENG, Y. S. (1993) Self-assembly and calcium-binding sites in laminin. A three-arm interaction model. Journal of Biological Chemistry 268, 1728–17299.

    PubMed  Google Scholar 

  • YURCHENCO, P. D., CHENG, Y. S. & COLOGNATO, H. (1992) Laminin forms an independent network in basement membranes. Journal of Cell Biology 117, 111–1133.

    PubMed  Google Scholar 

  • YURCHENCO, P. D., CHENG, Y. S. & RUBEN, G. C. (1987) Self-assembly of a high molecular weight basement membrane heparan sulfate proteoglycan into dimers and oligomers. Journal of Biological Chemistry 262, 1766–17676.

    PubMed  Google Scholar 

  • YURCHENCO, P. D. & O'REAR, J. J. (1994a) Basal lamina assembly. Current Opinion in Cell Biology 6, 67–681.

    PubMed  Google Scholar 

  • YURCHENCO, P. D. & O'REAR, J. J. (1994b) Basement membrane assembly. Methods in Enzymology 245, 48–518.

    PubMed  Google Scholar 

  • ZHAI, R. G., VARDINON-FRIEDMAN, H., CASESLANGHOFF, C., BECKER, B., GUNDELFINGER, E. D., ZIV, N. E. & GARNER, C. C. (2001) Assembling the presynaptic active zone: A characterization of an active one precursor vesicle. Neuron 29, 13–143.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patton, B.L. Basal lamina and the organization of neuromuscular synapses. J Neurocytol 32, 883–903 (2003). https://doi.org/10.1023/B:NEUR.0000020630.74955.19

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEUR.0000020630.74955.19

Keywords

Navigation