Skip to main content
Log in

The role of nitric oxide signaling in the formation of the neuromuscular junction

  • Published:
Journal of Neurocytology

Abstract

The formation of the vertebrate neuromuscular junction (NMJ) depends on the action of neural agrin on the muscle cell. The requirement for agrin and its receptor, muscle-specific kinase (MuSK), has been well established over the past 20 years. However, the signaling mechanisms through which agrin and MuSK cause synaptic differentiation are not well understood. New evidence from studies of muscle cells in culture and in embryos indicates that nitric oxide (NO) is an effector of agrin-induced postsynaptic differentiation at the NMJ. Cyclic GMP (cGMP) production by guanylate cyclase appears to be an important downstream step in this pathway. Nitric oxide and cGMP regulate the activity of several kinases, some of which may influence interaction of dystrophin and utrophin with the actin cytoskeleton to mediate or modulate postsynaptic differentiation in muscle cells. These signaling molecules could also play a role in retrograde signaling to influence differentiation of presynaptic nerve terminals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ABRAM, C. L. & COURTNEIDGE, S. A. (2000) Src family tyrosine kinases and growth factor signaling. Experimental Cell Research 254, –13.

    PubMed  Google Scholar 

  • ADAMS, M. E., KRAMARCY, N., KRALL, S. P., ROSSI, S. G., ROTUNDO, R. L., SEALOCK, R. & FROEHNER, S. C. (2000) Absence of alpha-syntrophin leads to structurally aberrant neuromuscular synapses deficient in utrophin. Journal of Cell Biology 150, 138–1398.

    PubMed  Google Scholar 

  • AKHAND, A. A., PU, M., SENGA, T., KATO, M., SUZUKI, H., MIYATA, T., HAMAGUCHI, M. & NAKASHIMA, I. (1999) Nitric oxide controls src kinase activity through a sulfhydryl group modification-mediated Tyr-527-independent and Tyr-416-linked mechanism. Journal of Biological Chemistry 274, 2582–25826.

    PubMed  Google Scholar 

  • ANDERSON, M. J. & COHEN, M. W. (1977) Nerve induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. Journal of Physiology (London) 268, 75–773.

    Google Scholar 

  • BISHOP, A. L. & HALL, A. (2000) Rho GTPases and their effector proteins. Biochemical Journal 348, 24–255.

    PubMed  Google Scholar 

  • BLOTTNER, D. & LÑCK, G. (1998) Nitric oxide synthase (NOS) in mouse skeletal muscle development and differentiated myoblasts. Cell and Tissue Research 292, 29–302.

    PubMed  Google Scholar 

  • BLOTTNER, D. & LÑCK, G. (2001) Just in time and place: NOS/NO system assembly in neuromuscular junction formation. Microscopy Research and Technique 55, 17–180.

    PubMed  Google Scholar 

  • BORGES, L. S. & FERNS, M. (2001) Agrin-induced phosphorylation of the acetylcholine receptor regulates cytoskeletal anchoring and clustering. Journal of Cell Biology 153, –11.

    PubMed  Google Scholar 

  • BORGES, L. S., LEE, Y. & FERNS, M. (2002) Dual role for calcium in agrin signaling and acetylcholine receptor clustering. Journal of Neurobiology 50, 6–79.

    Google Scholar 

  • BURDEN, S. J. (2002) Building the vertebrate neuromuscular synapse. Journal of Neurobiology 53, 50–511.

    PubMed  Google Scholar 

  • BURNETT, A. L., NELSON, R. J., CALVIN, D. C., LIU, J. X., DEMAS, G. E., KLEIN, S. L., KRIEGSFELD, L. J., DAWSON, V. L., DAWSON, T. M. & SNYDER, S. H. (1996) Nitric oxide-dependent penile erection in mice lacking neuronal nitric oxide synthase. Molecular Medicine 2, 28–296.

    PubMed  Google Scholar 

  • CARTAUD, A., COUTANT, S., PETRUCCI, T. C. & CARTAUD, J. (1998) Evidence for in situ and in vitro interaction between beta-dystroglycan and the subsynaptic 43 K rapsyn protein. Consequence for acetylcholine receptor clustering at the synapse. Journal of Biological Chemistry 273, 1132–11326.

    PubMed  Google Scholar 

  • CHAO, D. S., SILVAGNO, F., XIA, H., CORNWELL, T. L., LINCOLN, T. M. & BREDT, D. S. (1997) Nitric oxide synthase and cyclic GMP-dependent protein kinase concentrated at the neuromuscular endplate. Neuroscience 76, 66–672.

    PubMed  Google Scholar 

  • COHEN, I., RIMER, M., LOMO, T. & MCMAHAN, U. J. (1997) Agrin-induced postsynaptic-like apparatus in skeletal muscle fibers in vivo. Molecular and Cellular Neuroscience 9, 23–253.

    PubMed  Google Scholar 

  • COTE, P. D., MOUKHLES, H., LINDENBAUM, M. & CARBONETTO, S. (1999) Chimaeric mice deficient in dystroglycans develop muscular dystrophy and have disrupted myoneural synapses. Nature Genetics 23, 33–342.

    PubMed  Google Scholar 

  • DAI, Z., LUO, X., XIE, H. & PENG, H. B. (2000) The actin-driven movement and formation of acetylcholine receptor clusters. Journal of Cell Biology 150, 132–1334.

    PubMed  Google Scholar 

  • DECHIARA, T. M., BOWEN, D. C., VALENZUELA, D. M., SIMMONS, M. V., POUEYMIROU, W. T., THOMAS, S., KINETZ, E., COMPTON, D. L., ROJAS, E., PARK, J. S., SMITH, C., DISTEFANO, P. S., GLASS, D. J., BURDEN, S. J. & YANCOPOULOS, G. D. (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85, 50–512.

    PubMed  Google Scholar 

  • DESCARRIES, L. M., CAI, S. & ROBATAILLE, R. (1998) Localization and characterization of nitric oxide synthase at the frog neuromuscular junction. Journal of Neurocytology 27, 82–840.

    PubMed  Google Scholar 

  • ELIASSON, M. J., BLACKSHAW, S., SCHELL, M. J. & SNYDER, S. H. (1997) Neuronal nitric oxide synthase alternatively spliced forms: Prominent functional localizations in the brain. Proceedings of the National Academy of Sciences USA 94, 339–3401.

    Google Scholar 

  • FINN, A. J., PENDERGAST, A. M. & FENG, G. (2003) Postsynaptic requirement for Abl kinases in assembly of the neuromuscular junction. Nature Neuroscience 6, 71–723.

    PubMed  Google Scholar 

  • FRANK, E. & FISCHBACH, G. D. (1979) Early events in neuromuscular junction formation in vitro: Induction of acetylcholine receptor clusters in the postsynaptic membrane and morphology of newly formed synapses. Journal of Cell Biology 83, 14–158.

    PubMed  Google Scholar 

  • GAUTAM, M., NOAKES, P. G., MOSCOSO, L., RUPP, F., SCHELLER, R. H., MERLIE, J. P. & SANES, J.R. (1996) Defective neuromuscular synaptogenesis in agrin deficient mutant mice. Cell 85, 52–535.

    PubMed  Google Scholar 

  • GODFREY, E. W., ROE, J. & HEATHCOTE, R. D. (1999) Overexpression of agrin isoforms in Xenopus embryos alters the distribution of synaptic acetylcholine receptors during development of the neuromuscular junction. Developmental Biology 205, 2– 32.

    PubMed  Google Scholar 

  • GODFREY, E. W., ROE, J. & HEATHCOTE, R. D. (2000) Agrin fragments differentially induce ectopic aggregation of acetylcholine receptors in myotomal muscles of Xenopus embryos. Journal of Neurobiology 44, 43– 445.

    PubMed  Google Scholar 

  • GOPALAKRISHNA, R., CHEN, Z. H. & GUNDIMEDA, U. (1993) Nitric oxide and nitric oxide-generating agents induce a reversible inactivation of protein kinase C activity and phorbol ester binding. Journal of Biological Chemistry 268, 2718–27185.

    PubMed  Google Scholar 

  • GRADY, R. M., ZHOU, H., CUNNINGHAM, J. M., HENRY, M. D., CAMPBELL, K. P. & SANES, J. R. (2000) Maturation and maintenance of the neuromuscular synapse: Genetic evidence for roles of the dystrophinglycoprotein complex. Neuron 25, 27–293.

    PubMed  Google Scholar 

  • HAWKINS, R. D., SON, H. & ARANCIO, O. (1998) Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus. Progress in Brain Research 118, 15–172.

    PubMed  Google Scholar 

  • HOFFMANN, F., AMMENDOLA, A. & SCHLOSSMANN, J. (2000) Rising behind NO: cGMP-dependent protein kinases. Journal of Cell Science 113, 167–1676.

    PubMed  Google Scholar 

  • HUANG, P. L., DAWSON, T. M., BREDT, D. S., SNYDER, S. H. & FISHMAN, M. C. (1993) Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75, 127–1286.

    PubMed  Google Scholar 

  • JONES, G., MEIER, T., LICHTENSTEINER, M., WITZEMANN, V., SAKMANN, B. & BRENNER, H. R. (1997) Induction by agrin of ectopic and functional postsynaptic-like membrane in innervated muscle. Proceedings of the National Academy of Sciences USA 94, 265–2659.

    Google Scholar 

  • JONES, M. A. & WERLE, M. J. (2000a) Nitric oxide is a downstream mediator of agrin-induced acetylcholine receptor aggregation. Molecular and Cellular Neuroscience 16, 64–660.

    PubMed  Google Scholar 

  • JONES, M. A. & WERLE, M. J. (2000b) Nitric oxide mediates acetylcholine receptor aggregation through increasing intracellular cyclic GMP levels. Society for Neuroscience Abstracts 26, 1089.

    Google Scholar 

  • KAHL, J. & CAMPANELLI, J. T. (2003) A role for the juxtamembrane domain of beta-dystroglycan in agrininduced acetylcholine receptor clustering. Journal of Neuroscience 23, 39–402.

    PubMed  Google Scholar 

  • KRAMARCY, N. R. & SEALOCK, R. (2000) Syntrophin isoforms at the neuromuscular junction: Developmental time course and differential localization. Molecular and Cellular Neuroscience 15, 26–274.

    PubMed  Google Scholar 

  • KUNCEWICZ, T., BALAKRISHNAN, P., SNUGGS, M. B. & KONE, B. C. (2001) Specific association of nitric oxide synthase-2 with Rac isoforms in activated murine macrophages. American Journal of Physiology, Renal Physiology 276, F61–F621.

    Google Scholar 

  • KIM, D. K., HONG, E. K., LEE, K. H., KIM, J. I. & SONG, W. K. (1999) Molecular cloning and expression of nitric oxide synthase gene in chick embryonic muscle cells. Cell Biochemistry and Function 17, 26–270.

    PubMed  Google Scholar 

  • KUSNER, L. L. & KAMINSKI, H. J. (1996) Nitric oxide synthase is concentrated at the skeletal muscle endplate. Brain Research 730, 23–242.

    PubMed  Google Scholar 

  • LANUZA, M. A., LI, M.-X., JIA, M., KIM, S., DAVENPORT, R., DUNLAP, V. & NELSON, P. G. (2000) Protein kinase C-mediated changes in synaptic efficacy at the neuromuscular junction in vitro: The role of postsynaptic acetylcholine receptors. Journal of Neuroscience Research 61, 61–625.

    PubMed  Google Scholar 

  • LI, M.-X., JIA, M., YANG, L.-X., DUNLAP, V. & NELSON, P. G. (2002) Pre-and posynaptic mechanisms in Hebbian activity-dependent synapse modification. Journal of Neurobiology 52, 24–250.

    PubMed  Google Scholar 

  • LIN, W., BURGESS, R. W., DOMINGUEZ, B., PFAFF, S. L., SANES, J. R. & LEE, K. F. (2001) Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410, 105–1064.

    PubMed  Google Scholar 

  • LÑCK, G., HOCH, W., HOPF, C. & BLOTTNER, D. (2000) Nitric oxide synthase (NOS-1) coclustered with agrininduced AChR-specializations on cultured skeletal myotubes. Molecular and Cellular Neuroscience 16, 26–281.

    PubMed  Google Scholar 

  • LUO, Z. G., WANG, Q., ZHOU, J. Z., WANG, J., LUO, Z., LIU, M., HE, X., WYNSHAW-BORIS, A., XIONG, W. C., LU, B. & MEI, L. (2002) Regulation of AChR clustering by Dishevelled interacting with MuSK and PAK1. Neuron 35, 48–505.

    PubMed  Google Scholar 

  • LUO, Z., WANG, Q., XIONG, W. C. & MEI, L. (2003) Signaling complexes for AChR clustering. Journal of Neurocytology. 32, 69–708.

    PubMed  Google Scholar 

  • MEGEATH, L. J. & FALLON, J. R. (1998) Intracellular calcium regulates agrin-induced acetylcholine receptor clustering. Journal of Neuroscience 18, 67–678.

    PubMed  Google Scholar 

  • MEIER, T., HAUSER, D. M., CHIQUET, M., LANDMANN, L., RUEGG, M. A. & BRENNER, H. R. (1997) Neural agrin induces ectopic posynaptic specializations in innervated muscle fibers. Journal of Neuroscience 17, 635–6544.

    Google Scholar 

  • MILES, K. & WAGNER, M. (2003) Overexpression of nPKC theta is inhibitory for agrin-induced nicotinic acetylcholine receptor clustering in C2C12 myotubes. Journal of Neuroscience Research 71, 18–195.

    PubMed  Google Scholar 

  • MOHAMED, A., RIVAS-PLATAS, K. A., KRASS, J. R., SALEH, S. M. & SWOPE, S. L. (2001) Src-class kinases act within the agrin/MuSK pathway to regulate acetylcholine receptor phosphorylation, cytoskeletal anchoring, and clustering. Journal of Neuroscience 21, 380–3818.

    PubMed  Google Scholar 

  • MOHAMED, A. & SWOPE, S. L. (1999) Phosphorylation and cytoskeletal anchoring of the acetylcholine receptor by Src-class protein tyrosine kinases: Activation by rapsyn. Journal of Biological Chemistry 274, 2052–20539.

    PubMed  Google Scholar 

  • MORANSARD, M., BORGES, L. S., WILLMANN, R., MARANGI, P. A., BRENNER, H. R., FERNS, M. J. & FUHRER, C. (2003) Agrin regulates rapsyn interaction with surface AChRs which underlies cytoskeletal anchoring and clustering. Journal of Biological Chemistry 278, 735–7359.

    PubMed  Google Scholar 

  • NATHAN, C. & XIE, Q. W. (1994) Nitric oxide synthases: Roles, tolls, and controls. Cell 78, 91–918.

    PubMed  Google Scholar 

  • NOAKES, P. G., GAUTAM, M., MUDD, J., SANES, J. R. & MERLIE, J. P. (1995) Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin beta 2. Nature 374, 25–262.

    PubMed  Google Scholar 

  • PENG, H. B., YANG, J. F., DAI, Z., LEE, C. W., HUNG, H. W., FENG, Z. H. & KO, C. P. (2003) Differential effects of neurotrophins and Schwann cell-derived signals on neuronal survival/growth and synaptogenesis. Journal of Neuroscience 23, 505–5060.

    PubMed  Google Scholar 

  • PENZES, P., BEESER, A., CHERNOFF, J., SCHILLER, M. R., EIPPER, B. A., MAINS, R. E. & HUGANIR, R. L. (2003) Rapid induction of dendritic spine morphogenesis by trans-synaptic EphrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37, 26–274.

    PubMed  Google Scholar 

  • QU, Z. & HUGANIR, R. L. (1994) Comparison of innervation and agrin-induced tyrosine phosphorylation of the nicotinic acetylcholine receptor. Journal of Neuroscience 14, 683–6841.

    PubMed  Google Scholar 

  • RATOVITSKI, E. A., ALAM, M. R., QUICK, R. A., MCMILLAN, A., BAO, C., KOZLOVSKY, C., HAND, T. A., JOHNSON, R. C., MAINS, R. E., EIPPER, B. A. & LOWENSTEIN, C. J. (1999a) Kalirin inhibiton of inducible nitric-oxide synthase. Journal of Biological Chemistry 274, 99–999.

    PubMed  Google Scholar 

  • RATOVITSKI, E. A., BAI, C., QUICK, R. A., MCMILLAN, A., KOZLOVSKY, C. & LOWENSTEIN, C. J. (1999b) An inducible nitric-oxide synthase (NOS)-associated protein inhibits NOS dimerization and activity. Journal of Biological Chemistry 274, 3025–30257.

    PubMed  Google Scholar 

  • RIBERA, J., MARSAL, J., CASANOVAS, A., HUKKANEN, M., TARABAL, O. & ESQUERDA, J. E. (1998) Nitric oxide synthase in rat neuromuscular junctions and in nerve terminals of Torpedo electric organ: Its role as regulator of acetylcholine release. Journal of Neuroscience Research 51, 9–102.

    PubMed  Google Scholar 

  • RIMER, M., MATHIESON, I., LOMO, T. & MCMAHAN, U. J. (1997) Gamma-AChR/epsilon-AChR switch at agrin-induced postsynaptic-like apparatus in skeletal muscle. Molecular and Cellular Neuroscience 9, 25–263.

    PubMed  Google Scholar 

  • SANDER, M., CHAVOSHAN, B., HARRIS, S. A., IANNACCONE, S. T., STULL, J. T., THOMAS, G. D. & VICTOR, R. G. (2000) Functional muscle ischemia in neuronal nitric oxide synthase-deficient skeletal muscle of children with Duchenne muscular dystrophy. Proceedings of the National Academy of Sciences USA 97, 1381–13823.

    Google Scholar 

  • SANES, J. R. & LICHTMAN, J. W. (1999) Development of the vertebrate neuromuscular junction. Annual Review of Neuroscience 22, 38–442.

    PubMed  Google Scholar 

  • SANES, J. R. & LICHTMAN, J. W. (2001) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nature Reviews Neuroscience 2, 79–805.

    PubMed  Google Scholar 

  • SCHOSER, B. G. H. & BEHRENDS, S. (2001) Soluble guanylyl cyclase is localized at the neuromuscular junction in human skeletal muscle. NeuroReport 12, 97–981.

    PubMed  Google Scholar 

  • SCHWARTE, R. C. & GODFREY, E. W. (2001) Overexpression of nitric oxide synthase increases acetylcholine receptor aggregation at embryonic neuromuscular junctions. Society for Neuroscience Abstracts 27, no. 694.9.

  • SENTER, L., CEOLDO, S., MEZNARIC PETRUSA, M. & SALVIATI, G. (1995) Phosphorylation of dystrophin: Effects on actin binding. Biochemical and Biophysical Research Communications 206, 5–63.

    PubMed  Google Scholar 

  • SMITH, C. L., MITTAUD, P., PRESCOTT, E. D., FUHRER, C. & BURDEN, S. J. (2001) Src, Fyn, and Yes are not required for neuromuscular synapse formation but are necessary for stabilization of agrin-induced clusters of acetylcholine receptors. Journal of Neuroscience 21, 315–3160.

    PubMed  Google Scholar 

  • SON, H., HAWKINS, R. D., MARTIN, K., KIEBLER, M., HUANG, P. L., FISHMAN, M. C. & KANDEL, E. R. (1996) Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 87, 101–1023.

    PubMed  Google Scholar 

  • STAMLER, J. S. & MEISSNER, G. (2001) Physiology of nitric oxide in skeletal muscle. Physiological Reviews 81, 20–237.

    PubMed  Google Scholar 

  • THOMAS, S. & ROBITAILLE, R. (2001) Differential frequency-dependent regulation of transmitter release by endogenous nitric oxide at the amphibian neuromuscular synapse. Journal of Neuroscience 21, 108–1095.

    PubMed  Google Scholar 

  • WALLACE, B. G. (1988) Regulation of agrin-induced acetylcholine receptor aggregation by Ca++ and phorbol ester. Journal of Cell Biology 107, 26–278.

    PubMed  Google Scholar 

  • WANG, C.-Y., YANG, F., HE, X.-P., JE, H.-S., ZHOU, J.-Z., ECKERMANN, K., KAWAMURA, D., FENG, L., SHEN, L. & LU, B. (2002) Regulation of neuromuscular synapse development by glial cell line-derived neurotrophic factor and neurturin. Journal of Biological Chemistry 277, 1061–10625.

    PubMed  Google Scholar 

  • WANG, T., XIE, Z. & LU, B. (1995) Nitric oxide mediates activity-dependent synaptic suppression at developing neuromuscular synapses. Nature 374, 26–266.

    PubMed  Google Scholar 

  • WANG, Y., NEWTON, D. C., ROBB, G. B., KAU, C.-L, MILLER, T. L., CHEUNG, A. H., HALL, A. V., VANDAMME, S., WILCOX, J. N. & MARSDEN, P. A. (1999). RNA diversity has profound effects on the translation of neuronal nitric oxide synthase. Proceedings of the National Academy of Sciences USA 96, 1215–12155.

    Google Scholar 

  • WEHLING, M., SPENCER, M. J. & TIDBALL, J. G. (2001) A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. Journal of Cell Biology 155, 12–131.

    PubMed  Google Scholar 

  • WESTON, C., YEE, B., HOD, E. & PRIVES, J. (2000) Agrin induced acetylcholine receptor clustering is mediated by the small guanosine triphosphatases Rac and Cdc42. Journal of Cell Biology 150, 20–212.

    PubMed  Google Scholar 

  • WESTON, C., GORDON, C., TERESSA, G., HOD, E., REN, X.-D. & PRIVES, J. (2003) Cooperative regulation by Rac and Rho of agrin-induced acetylcholine receptor clustering in muscle cells. Journal of Biological Chemistry 278, 645–6455.

    PubMed  Google Scholar 

  • WILDEMANN, B. & BICKER, G. (1999) Nitric oxide and cyclic GMP induce vesicle release at Drosophila neuromuscular junction. Journal of Neurobiology 39, 33–346.

    PubMed  Google Scholar 

  • WILLMANN, R. & FUHRER, C. (2002) Neuromuscular synaptogenesis: Clustering of acetylcholine receptors revisited. Cellular and Molecular Life Sciences 59, 129– 1316.

    PubMed  Google Scholar 

  • YANG, C. C., ALVAREZ, R. B., ENGEL, W. K., HAUN, C. K. & ASKANAS, V. (1997) Immunolocalization of nitric oxide synthases at the postsynaptic domain ofhuman and rat neuromuscular junctions—light and electron microscopic studies. Experimental Neurology 148, 3–44.

    PubMed  Google Scholar 

  • YANG, X., ARBER, S., WILLIAM, C., LI, L., TANABE, Y., JESSELL, T. M., BIRCHMEIER, C. & BURDEN, S. J. (2001) Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30, 39–410.

    PubMed  Google Scholar 

  • YUEN, P. S., DOOLITTLE, L. K. & GARBERS, D. L. (1994) Dominant negative mutants of nitric oxide-sensitive guanylyl cyclase. Journal of Biological Chemistry 269, 79–793.

    PubMed  Google Scholar 

  • ZHANG, L., WANG, J. M., TSENG, C. N., VIROONCHATAPAN, N., ROTHE, E., YAO, Y. & WANG, Z. Z. (2002) Agrin induces postsynaptic differentiation at the neuromuscular junction by antagonizing the Wnt/ ?-catenin pathway. Society for Neuroscience Abstracts 28, no. 234.12.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Earl W. Godfrey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godfrey, E.W., Schwarte, R.C. The role of nitric oxide signaling in the formation of the neuromuscular junction. J Neurocytol 32, 591–602 (2003). https://doi.org/10.1023/B:NEUR.0000020612.87729.98

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEUR.0000020612.87729.98

Keywords

Navigation