Skip to main content
Log in

Two synaptic vesicle pools, vesicle recruitment and replenishment of pools at the Drosophila neuromuscular junction

  • Published:
Journal of Neurocytology

Abstract

Drosophila neuromuscular junctions (DNMJs) are malleable and its synaptic strength changes with activities. Mobilization and recruitment of synaptic vesicles (SVs), and replenishment of SV pools in the presynaptic terminal are involved in control of synaptic efficacy. We have studied dynamics of SVs using a fluorescent styryl dye, FM1-43, which is loaded into SVs during endocytosis and released during exocytosis, and identified two SV pools. The exo/endo cycling pool (ECP) is loaded with FM1-43 during low frequency nerve stimulation and releases FM1-43 during exocytosis induced by high K+. The ECP locates close to release sites in the periphery of presynaptic boutons. The reserve pool (RP) is loaded and unloaded only during high frequency stimulation and resides primarily in the center of boutons. The size of ECP closely correlates with the efficacy of synaptic transmission during low frequency neuronal firing. An increase of cAMP facilitates SV movement from RP to ECP. Post-tetanic potentiation (PTP) correlates well with recruitment of SVs from RP. Neither PTP nor post-tetanic recruitment of SVs from RP occurs in memory mutants that have defects in the cAMP/PKA cascade. Cyotochalasin D slows mobilization of SVs from RP, suggesting involvement of actin filaments in SV movement. During repetitive nerve stimulation the ECP is replenished, while RP replenishment occurs after tetanic stimulation in the absence of external Ca2+. Mobilization of internal Ca2+ stores underlies RP replenishment. SV dynamics is involved in synaptic plasticity and DNMJs are suitable for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AIUCHI, T., MATSUNAGA, M., NAKAYA, K. & NAKAMURA, Y. (1985) Effects of probes of membrane potential on metabolism in synaptosomes. Biochimica et Biophysica Acta 843, 2–24.

    PubMed  Google Scholar 

  • AMARA, S. G. & KUHAR, M. J. (1993) Neurotransmitter transporters: Recent progress. Annual Review of Neuroscience 16, 7–93.

    PubMed  Google Scholar 

  • ANDERSON, M. S., HALPERN, M. E. & KESHISHIAN, H. (1988) Identification of the neuropeptide transmitter proctolin in Drosophila larvae: Characterization of muscle fiber-specific neuromuscular endings. Journal of Neuroscience 8, 24–255.

    PubMed  Google Scholar 

  • ATWOOD, H. L., GOVIND, C. K. & WU, C.-F. (1993) Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. Journal of Neurobiology 24, 100–1024.

    PubMed  Google Scholar 

  • BETZ, W. J. & BEWICK, G. S. (1992) Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255, 20–203.

    PubMed  Google Scholar 

  • BETZ, W. J., MAO, F. & BEWICK, G. S. (1992) Activity dependent fluorescent staining and destaining of living vertebrate motor nerve terminals. Journal of Neuroscience 12, 36–375.

    PubMed  Google Scholar 

  • BOWMAN, E. J., SIEBERS, A. & ALTENDORF, K. (1988) Bafilomycins: A class of inhibitors of membrane ATPase from microorganisms, animal cells and plant cells. Proceedings of the National Academy of Sciences of the USA 85, 797–7976.

    PubMed  Google Scholar 

  • BUDNIK, V., ZHONG, Y. & WU, C.-F. (1990) Morphological plasticity of motor axons in Drosophila mutants with altered excitability. Journal of Neuroscience 10, 375–3768.

    PubMed  Google Scholar 

  • BYERS, D., DAVIS, R. L. & KIGER, J. A. (1981) Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature 289, 7–81.

    PubMed  Google Scholar 

  • DELGADO, R., MAUREIRA, C., OLIVA, C., KIDOKORO, Y. & LABARCA, P. (2000) Size of vesicle pools, rates of mobilization, and recycling at neuromuscular synapses of a Drosophila mutant, shibire. Neuron 28, 94–953.

    Google Scholar 

  • DIANTONIO, A., PETERSEN, S. A., HECKMANN, M. & GOODMAN, C. (1999) Glutamate receptor expression regulates quantal size and quantal content at the Drosophila neuromuscular junction. Journal of Neuroscience 19, 302–3032.

    PubMed  Google Scholar 

  • ENGERT, F. & BONHOEFFER, T. (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 8–70.

    Google Scholar 

  • ESTES, P. S., ROOS, J., VAN DER BLIEK, A., KELLY, R. B., KRISHNAN, K. S. & RAMASWAMI, M. (1996) Traffic of dynamin within individual Drosophila synaptic boutons relative to compartment-specific markers. Journal of Neuroscience 16, 544–5456.

    PubMed  Google Scholar 

  • GREENGARD, P., VALTORTA, F., CZERNIK, A. J. & BENFENATI, F. (1993) Synaptic vesicle phosphoprotein and regulation of synaptic function. Science 259, 78–785.

    PubMed  Google Scholar 

  • HALPERN, M. E., ANDERSON, M. S., JOHANSEN, J. & KESHISHIAN, H. (1988) Octopamine immunoreactivie nerve terminals are found on a single identified muscle fiber of the Drosophila larval body wall. Society of Neuroscience Abstract 14, 383.

    Google Scholar 

  • HARTWIG, J. H., THELEN, M., ROSEN, A., JANMEY, P. A., NAIRN, A. C. & ADEREM, A. (1992) MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature 356, 61–622.

    PubMed  Google Scholar 

  • JOHANSEN, J., HALPERN, M. E., JOHANSEN K. M. & KESHISHIAN, H. (1989a) Stereotypic morphology of glutamatergic synapses on identified muscle cells of Drosophila larvae. Journal of Neuroscience 9, 71–725.

    PubMed  Google Scholar 

  • JOHANSEN, J., HALPERN, M. E. & KESHISHIAN, H. (1989b) Axonal guidance and the development of muscle fiber-specific innervation in Drosophila embryos. Journal of Neuroscience 9, 431–4332.

    PubMed  Google Scholar 

  • KANDEL, E. R. (2001) The molecular biology of memory storage: A dialog between genes and synapses. Science 294, 103–1038.

    PubMed  Google Scholar 

  • KATZ, B. (1969) The release of neural transmitter substances. The Sherrington Lectures X. Charles C. Thomas Publisher. Springfield, Illinois, USA.

    Google Scholar 

  • KLINGAUF, J., KAVALALI, E. T. & TSIEN, R. W. (1998) Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394, 58–583.

    PubMed  Google Scholar 

  • KOENIG, J. H., SAITO, K. & IKEDA, K. (1983) Reversible control of synaptic transmission in a single gene mutant of Drosophila melanogaster. Journal of Cell Biology 96, 151–1522

    PubMed  Google Scholar 

  • KOENIG, J. H., KOSAKA, T. & IKEDA, K. (1989) The relationship between the number of synaptic vesicles and the amount of transmitter released. Journal of Neuroscience 9, 193–1942.

    PubMed  Google Scholar 

  • KOENIG, J. H., YAMAOKA, K. & IKEDA, K. (1993) Calcium-induced translocation of synaptic vesicles to the active site. Journal of Neuroscience 13, 231–2322.

    PubMed  Google Scholar 

  • KOENIG, J. H. & IKEDA, K. (1996) Synaptic vesicles have two distinct recycling pathways. Journal of Cell Biology 135, 79–808.

    PubMed  Google Scholar 

  • KOSAKA, T. & IKEDA, K. (1983) Possible temperaturedependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila. Journal of Neurobiology 14, 20–225.

    PubMed  Google Scholar 

  • KUROMI, H., YOSHIHARA, M. & KIDOKORO, Y. (1997) An inhibitory role of calcineurin in endocytosis of synaptic vesicles at nerve terminals of Drosophila larvae. Neuroscience Research 27, 10–113.

    PubMed  Google Scholar 

  • KUROMI, H. & KIDOKORO, Y. (1998) Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron 20, 91–925.

    PubMed  Google Scholar 

  • KUROMI, H. & KIDOKORO, Y. (1999) The optically determined size of exo/endo cycling vesicle pool correlates with the quantal content at the neuromuscular junction of Drosophila larvae. Journal of Neuroscience 19, 155–1565.

    PubMed  Google Scholar 

  • KUROMI, H. & KIDOKORO, Y. (2000) Tetanic stimulation recruits vesicles from reserve pool via a cAMP-mediated process in Drosophila synapses. Neuron 27, 13–143.

    PubMed  Google Scholar 

  • KUROMI, H. & KIDOKORO, Y. (2002) Selective replenishment of two vesicle pools depends on the source of Ca2+ at the Drosophila synapse. Neuron 35, 33–343.

    PubMed  Google Scholar 

  • LEVIN, L. R., HAN, P.-L., HWANG, P. M., FEINSTEIN, P. G., DAVIS, R. L. & REED, R. R. (1992) The Drosophila learning gene rutabaga encodes a Ca2+/calmodulin responsive adenylyl cyclase. Cell 68, 47–489.

    PubMed  Google Scholar 

  • LI, J. & SCHWARZ, T. L. (1999) Genetic evidence for an equilibrium between docked and undocked vesicles. Philosophical Transactions of Royal Society of London series B 354, 29–306.

    Google Scholar 

  • LIVINGSTONE, M. S., SZIBER, P. P. & QUINN, W. G. (1984) Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell 37, 20–215.

    PubMed  Google Scholar 

  • MALETIC-SAVATIC, M., MALINOW, R. & SVOBODA, K. (1999) Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 192–1927.

    PubMed  Google Scholar 

  • MELLOR, J. & NICOLL, R. (2001) Hippocampal mossy fiber LTP is independent of postsynaptic calcium. Nature Neuroscience 4, 12–126.

    PubMed  Google Scholar 

  • MOCHIDA, S., KOBAYASHI, H., MATSUDA, Y., YUDA, Y., MURAMOTO, K. & NONOMURA, Y. (1994) Myosin II is involved in transmitter release at synapses formed between rat sympathetic neurons in culture. Neuron 13, 113–1142.

    PubMed  Google Scholar 

  • NARAHASHI, T. (1974) Chemicals as tools in the study of excitable membrane. Physiological Reviews 54, 81–889.

    PubMed  Google Scholar 

  • NICOLL, R. & MALENKA, R. C. (1999) Expression mechanism underlying NMDA receptor-dependent long-term potentiation. Annals of New York Academy of Science 868, 51–525.

    Google Scholar 

  • PETERSEN, S. A., FETTER, R. D., NOORDERMEER, J. N., GOODMAN, C. S. & DIANTONIO, A. (1997) Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release. Neuron 19, 123–1248.

    PubMed  Google Scholar 

  • PIERIBONE, V. A., SCHUPLIAKOV, O., BRODIN, L., HILFIKER-ROTHENFLUSH, S., CZERNIK, A. J. & GREENGARD, P. (1995) Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375, 49– 497.

    PubMed  Google Scholar 

  • POODRY, C. A. & EDGAR, L. (1979) Reversible alterations in the neuromuscular junctions of Drosophila melanogaster bearing a temperature-sensitive mutation, shibire. Journal of Cell Biology 81, 52–527.

    PubMed  Google Scholar 

  • PREKERIS, R. & TERRIAN, D. M. (1997) Brain myosin V is a synaptic vesicle-associated motor protein. Evidence for Ca2+-dependent interaction with the synaptobrevin synaptophysin complex. Journal of Cell Biology 137, 158–1601.

    PubMed  Google Scholar 

  • RICHARDS, D. A., GUATIMOSIM, C. & BETZ, W. J. (2000) Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron 27, 55–559.

    PubMed  Google Scholar 

  • SANKARANARAYANAN, S. & RYAN, T. A. (2001) Calcium accelerates endocytosis of vSNAREs at hippocampal synapses. Nature Neuroscience 4, 12–136.

    PubMed  Google Scholar 

  • SCHUSTER, C. M., ULTSCH, A., SCHLOSS, P., SCHMITT, B. & BETZ, H. (1991) Molecular cloning of an invertebrate glutamate receptor subunit expressed in Drosophila muscle. Science 254, 11–114.

    PubMed  Google Scholar 

  • SIGRIST, S. J., THIEL, P. R., REIFF, D. F. & SCHUSTER C. M. (2002) The postsynaptic glutamate receptor subunit DGluR-IIA mediates long-term plasticity in Drosophila. Journal of Neuroscience 22, 736–7372.

    PubMed  Google Scholar 

  • STEWART, B. A., ATWOOD, H. L., RENGER, J. J., WANG, J. & WU, C.-F. (1994) Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. Journal of Comparative Physiology 175, 17–191.

    PubMed  Google Scholar 

  • TABB, J. S., MOLYNEAUX, B. J., COHEN, D. L., KUZNETSOV, S. A. & LANGFORD, G. M. (1998) Transport of ER vesicles on actin filaments in neuron by myosin V. Journal of Cell Science 111, 322–3234.

    PubMed  Google Scholar 

  • THASTRUP, O., CULLEN, P. J., DROBAK, B. K., HANLEY, M. R. & DOWSON, A. P. (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proceedings of National Academy of Sciences of the USA 87, 246–2479.

    Google Scholar 

  • VON GERSHDORFF, H. & MATTHEWS, G. (1997) Depletion and replenishment of vesicle pools at a ribbon-type synaptic terminal. Journal of Neuroscience 17, 191–1927.

    PubMed  Google Scholar 

  • YOSHIHARA, M., SUZUKI, K. & KIDOKORO, Y. (2000) Two independent pathways mediated by cAMP enhance spontaneous transmitter release at Drosophila neuromuscular junctions. Journal of Neuroscience 15, 831–8322.

    Google Scholar 

  • ZHONG, Y., BUDNIK, V. & WU, C.-F. (1992) Synaptic plasticity in Drosophila memory and hyperexcitable mutants: Role of cAMP cascade. Journal of Neuroscience 12, 64–651.

    PubMed  Google Scholar 

  • ZHONG, Y. & WU, C.-F. (1991) Altered synaptic plasticity in Drosophila memory mutants with a defective cyclic AMP cascade. Science 251, 19–201.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuromi, H., Kidokoro, Y. Two synaptic vesicle pools, vesicle recruitment and replenishment of pools at the Drosophila neuromuscular junction. J Neurocytol 32, 551–565 (2003). https://doi.org/10.1023/B:NEUR.0000020610.13554.3c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEUR.0000020610.13554.3c

Keywords

Navigation