Skip to main content
Log in

Ultrastructural organization of GABA-like immunoreactive profiles in the weaver substantia nigra

  • Published:
Journal of Neurocytology

Abstract

GABA-like immunoreactivity (GABA-LI) in the substantia nigra pars compacta (SNc) of mutant weaver mice was investigated at the electron microscope level. Eight-week-old homozygous mutant weaver mice, paired with wildtype littermates as controls, were perfused with a buffered paraformadehyde/acrolein solution. Sections containing the SN were immunocytochemically reacted with an antiserum to GABA using the peroxidase-antiperoxidase (PAP) procedure. Ultrastructural examination revealed that profiles of GABA-LI dendrites were decreased in number while profiles of labeled axonal processes were increased. In addition, there were an increased number of GABA-LI terminals in contact with similarly labeled GABA-LI dendrites. Double-labeling experiments using the antibodies to GABA and dopamine D2 receptors showed that a small number of GABA-LI profiles exhibited D2-like immunoreactivity in both controls and weavers.

These results suggest that the GABA-LI synaptic connections are altered as a result of the loss of DA neurons in the SNc of the weaver mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ALBIN, R. L., YOUNG, A. B. & PENNY, J. B. (1989) The functional anatomy of basal ganglia disorders. Trends in Neuroscience 12, 66–75.

    Google Scholar 

  • BJORKLUND, A. & LINDVALL, O. (1975) Dopamine in dendrites of substantia nigra neurons: Suggestions of a role in dendritic terminals. Brain Research 83, 531–537.

    PubMed  Google Scholar 

  • BOLAM, J. P. & SMITH, Y. (1990) TheGABAand substance P input to dopaminergic neurons in the substantia nigra of the rat. Brain Research 529, 57–78.

    PubMed  Google Scholar 

  • BOLAM, P. & SMITH, Y. (1991) Characterization of the synaptic inputs to dopaminergic neurones in the rat substantia nigra. In The Basal Ganglia III (edited by BERNARDI, G. et al.), vol. 39, pp. 119–131. New York: Plenum Press.

    Google Scholar 

  • BROCK, J. W., FAROOQUI, S., ROSS, K. & PRASAD, C. (1992) Localization of dopamine D2 receptor protein in rat brain using polyclonal antibody. Brain Research 578, 244–250.

    PubMed  Google Scholar 

  • CHAN, J., AOKI, C. & PICKEL, V. M. (1990) Optimization of differential immunogold-silver and peroxidase labeling with maintenance of ultrastructure in brain sections before plastic embedding. Journal of Neuroscience Methods 33, 113–127.

    PubMed  Google Scholar 

  • DENIAU, J.-M. & CHEVALIER, G. (1994) Functional architecture of the rodent substantia nigra pars reticulata: Evidence for segregated channels. Advances in Behavioral Biology 41, 63–70.

    Google Scholar 

  • FAROOQUI, S. M., BROCK, J. W., HAMDI, A. & PRASAD, C. (1991) Antibodies against synthetic peptides predicted from the nucleotide sequence of D2 receptor recognize native dopamine receptor protein in rat striatum. Journal of Neurochemistry 57, 1363–1369.

    PubMed  Google Scholar 

  • FONNUM, F., GROFOVA, I., RINVIK, E., STORMMATHISEN, J. & WALBERG, F. (1994) Origin and distribution of glutamate decarboxylase in substantia nigra of the cat. Brain Research 71, 77–92.

    Google Scholar 

  • GAUCHY, C., KEMEL, M. L., DESBAN, M., ROMO, R., GLOWINSKI, J. & BESSON, M. J. (1987) The role of dopamine release from distal and proximal dendrites of nigrostriatal dopaminergic neurons in the control of GABA transmission in the thalamic nucleus ventralis medialis in the cat. Neuroscience 22, 935–946.

    PubMed  Google Scholar 

  • GERFEN, C. R. (1985) The neostriatal mosaic. I. Compartmental organization of projections from the striatum to the substantia nigra in the rat. Journal of Comparative Neurology 236, 454–476.

    PubMed  Google Scholar 

  • GERFEN, C. R., ENGBER, T. M., MAHAN, L. C., SUSEL, Z., CHASE, T. N., MONSMA, F. J. & SIBLEY, D. R. 1990. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432.

  • GRAYBIEL, A. M. (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends in Neuroscience 13, 244–254.

    Google Scholar 

  • GUATTEO, E., FUSCO, F. R., GIACOMINI, P., BERNADI, G. & MERCURI, N. B. (2000) The weaver mutation reverses the function of dopamine and GABA in mouse dopaminergic neurons. Journal of Neuroscience 20, 6013–6020.

    PubMed  Google Scholar 

  • GULLEY, R. L. & SMITHBERG, M. (1971) Synapses in the rat substantia nigra. Tissue and Cell 3, 691–700.

    Google Scholar 

  • GULLEY, R. L. & WOOD, R. L. (1971) The fine structure of the neurons in the rat substantia nigra. Tissue and Cell 3, 675–690.

    Google Scholar 

  • GUPTA, M., FELTEN, D. L. & GHETTI, B. (1987) Selective loss of monoaminergic neurons in weaver mutant mice—An immunocytochemical study. Brain Research 402, 379–382.

    PubMed  Google Scholar 

  • INANOBE, A., YOSHIMOTO, Y., HORIO, Y., MORISHIGE, K. I., HIBINO, H., MATSUMOTO, S., TOKUNAGA, Y., MAEDA, T., HAA, T. Y., TAKAI, Y. & KURACHI, Y. (1999) Characterization of G-protein-gated K+ channels composed of Kir3.2 subunits in dopaminergic neurons of the substantia nigra. Journal of Neuroscience 19, 1017.

    Google Scholar 

  • LIAO, Y. J., JAN, Y. N. & JAN, L. J. (1996) Heteromultimerization of G-protein-gated inwardly reactifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain. Journal of Neuroscience 16, 7137–7150.

    PubMed  Google Scholar 

  • MENDEZ, I., ELISEVICH, K. & FLUMERFELT, B. (1992) Substance P synaptic interactions with GABAergic and dopaminergic neurons in rat substantia nigra: An ultrastructural double-labeling immunocytochemical study. Brain Research Bulletin 28, 557–563.

    PubMed  Google Scholar 

  • MENDEZ, I., ELISEVICH, K. & FLUMERFELT, B. (1993) GABAergic synaptic interactions in the substantia nigra. Brain Research 617, 274–284.

    PubMed  Google Scholar 

  • MURER, G., ADELBRECHT, C., LAURITZEN, I., LESAGE, F., LAZDUNSKI, M., AGID, Y. & RAISMAN-VOZARI, R. (1997) An immunocytochemical study on the distribution of two G-protein-gated inward rectifier potassium channels (GIRK2 and GIRK4) in the adult rat brain. Neuroscience 80, 345–357.

    PubMed  Google Scholar 

  • NITSCH, C. & RIESENBERG, R. (1988) Immunocytochemical demonstration of GABAergic synaptic connections in rat substantia nigra after different lesions of the striatonigral projection. Brain Research 461, 127–142.

    PubMed  Google Scholar 

  • NORTH, R. A. (1989) Drug receptors and the inhibition of nerve cells. Twelfth Gaddum memorial lecture. British Journal of Pharmacology 98, 13–28.

    PubMed  Google Scholar 

  • OERTEL, W. H. & MUGNAINI, E. (1984) Immunocytochemical studies of GABAergic neurons in rat basal ganglia and their relations to other neuronal systems. Neuroscience Letters 47, 233–238.

    PubMed  Google Scholar 

  • OERTEL, W. H., TAPPAZ, M. L., BEROD, A. & MUGNAINI, E. (1982) Two-color immunocytochemistry for dopamine and GABA neurons in rat substantia nigra and zona incerta. Brain Research Bulletin 9, 463–474.

    PubMed  Google Scholar 

  • PARENT, A. & HAZRATI, L.-N. (1995) Functional anatomy of the basal ganglia. I. The cortico-basal gangliathalamo-cortical loop. Brain Research Review 20, 91–127.

    Google Scholar 

  • PATIL, N., COX, D. R., BHAT, D., FAHAM, M., MYERS, R. M. & PETERSON, A. S. (1995) A potasium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nature Genetics 11, 126–129.

    PubMed  Google Scholar 

  • RAKIC, P. & SIDMAN, R. L. (1973b) Organization cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. Journal of Comparative Neurology 152, 133–162.

    PubMed  Google Scholar 

  • RAKIC, P. & SIDMAN, R. L. (1973a) Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice. Journal of Comparative Neurology 152, 103–132.

    PubMed  Google Scholar 

  • REUBI, J. C., IVERSEN, L. L. & JESSELL, T. M. (1977) Dopamine selectively increases 3H-GABA release from slices of rat substantia nigra in vitro. Nature 268, 652–654.

    Google Scholar 

  • RIBAK, C. E., VAUGHN, J. E., SAITO, K., BARBER, R. P. & ROBERTS, E. (1976) Immunocytochemical localization of glutamate decarboxylase in rat substantia nigra. Brain Research 116, 287–298.

    PubMed  Google Scholar 

  • RINVIK, E. & GROFOVA, I. (1970) Observations on the fine structure of the substantia nigra in the cat. Experimental Brain Research 11, 229–248.

    Google Scholar 

  • ROEFLER-TARLOV, S. & GRAYBIEL, A. M. (1986) Expression of the weaver gene in dopamine-containing neuronal system is dose-dependent and affects both striatal and nonstriatal regions. Journal of Neuroscience 6, 3319–3330.

    PubMed  Google Scholar 

  • RUFFIEUX, A. & SCHULTZ, W. (1980) Dopaminergic activation of reticulata neurons in the substantia nigra. Nature 285, 240–241.

    PubMed  Google Scholar 

  • SANTIAGO, M. & WESTERINK, B. H. C. (1992) The role of GABA receptors in the control of nigrostriatal dopaminergic neurons: Dual-probe microdialysis study in awake rats. European Journal of Pharmacology 219, 175–181.

    PubMed  Google Scholar 

  • SATO, T. (1968) A modified method for lead staining of thin sections. Journal of Electron Microscopy 17, 158–159.

    PubMed  Google Scholar 

  • SCHACHNER, M., HEDLEY-WHITE, E. T., HSE, D. W., SCHOONMAKER, G. & BIGNAMI A. (1977) Ultrastructural localization of glial fibrillary acid protein in mouse cerebellum by immunoperoxidase labeling. Journal of Cell Biology 75, 67–73.

    PubMed  Google Scholar 

  • SCHMIDT, M. J., SAWYER, B. D., PERRY, K. W., FULLER, R. W., FOREMAN, M. M. & GHETTI, B. (1982) Dopamine deficiency in the weaver mutant mouse. Journal of Neuroscience 2, 376–380.

    PubMed  Google Scholar 

  • SIBLEY, D. R., MONSMA, F. J. & SHEN, Y. (1993) Molecular neurobiology of D1 and D2 dopamine receptors. In: D 1 :D2 Dopamine Receptors Interactions (edited by WADDINGTON, J.), pp. 1–22. San Diego: Academic Press Ltd.

    Google Scholar 

  • SIDMAN, R. L., ANGEVINE, JR., J. B. & PIERCE, E. T. (1971) Atlas of the Mouse Brain and Spinal Cord. Cambridge: Harvard University Press.

    Google Scholar 

  • SMITH, D. E., GLOVER. B. & HENRY, C. (2003) Dendritic changes in medium spiny neurons of the weaver striatum: A Golgi study. In The Basal Ganglia VI (edited by GRAYBIEL, A. M., DELONG, M. R., & KITAI, S. T.), pp. 379–384. New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • SMITH, M. W., III, COOPER, T. R., JOH, T. H. & SMITH, D. E. (1990) Cell loss and class distribution of TH-1 cells in the substantia nigra of the neurological mutant, weaver. Brain Research 510, 242–250.

    PubMed  Google Scholar 

  • SMITH, Y. & BOLAM, J. P. (1990) The output neurones and the dopaminergic neurones of the substantia nigra receive a GABA-containing input from the globus pallidus in the rat. Journal of Comparative Neurology 296, 47–64.

    PubMed  Google Scholar 

  • SMITH, Y. & KIEVAL, J. Z. (2000) Anatomy of the dopamine in the basal ganglia. Trends in Neuroscience 23 S28–S33.

    Google Scholar 

  • SODICKSON, D. L. & BEAN, B. P. (1998) Neurotransmitter activation of inwardly rectifying potassium current in dissociated hippocampal CA3 neurons: Interactions among multiple receptors. Journal of Neuroscience 18, 8153–8161.

    PubMed  Google Scholar 

  • STERNBERGER, L. A. (1974) The unlabeled antibody enzyme method. In Immunocytochemistry, p. 129. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • TRIARHOU, L. C. & GHETTI, B. (1989) The dendritic dopamine projection of the substantia nigra: Phenotypic denominator of weaver gene action in hetero-and homozygosity. Brain Research 501, 373–381.

    PubMed  Google Scholar 

  • TRIARHOU, L. C., NORTON, J. & GHETTI, B. (1988) Mesencephalic dopamine cell deficit involves area A8, A9 and A10 in weaver mutant mice. Journal of Experimental Brain Research 70, 256–265.

    Google Scholar 

  • VAN DEN POL, A. N., SMITH, A. D. & POWELL, J. F. (1985) GABA axons in synaptic contact with dopamine neurons in the substantia nigra: Double immunochemistry with biotin-peroxidase and protein A-colloidal gold. Brain Research 348, 146–154.

    PubMed  Google Scholar 

  • WATSON, M. L. (1958) Staining of tissue sections for electron microscopy with heavy metals. Journal of Biophysical & Biochemical Cytology 4, 475–478.

    Google Scholar 

  • XU, S. G., PRASAD, C. & SMITH, D. E. (1999) Neurons exhibiting dopamine D2 receptor immunoreactivity in the substantia nigra of the mutant weaver mouse. Neuroscience 89, 191–207.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane E. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D.E., Xu, SG. Ultrastructural organization of GABA-like immunoreactive profiles in the weaver substantia nigra. J Neurocytol 32, 293–303 (2003). https://doi.org/10.1023/B:NEUR.0000010087.39779.f2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEUR.0000010087.39779.f2

Keywords

Navigation