Skip to main content
Log in

Porocytosis: Secretion from small and medium-diameter vesicles and vesicle arrays without membrane fusion

  • Published:
Journal of Neurocytology

Abstract

We have recently proposed a mechanism to describe secretion, a fundament process in all cells. That hypothesis, called porocytosis, embodies all available data, and encompasses both forms of secretion, i.e., vesicular and constitutive. The current accepted view of exocytotic secretion involves the physical fusion of vesicle- and plasma membranes. However, that hypothesized mechanism does not fit all available physiological data (Silver et al., 2001; Kriebel et al., 2001). Energetics of apposed lipid bilayers do not favor unfacilitated fusion. Calcium ion levels are elevated in microdomains at levels of 10−4–10−3M for 1 ms or less, with the calcium ions showing limited lateral mobility at the site of secretion (Llinas et al., 1992, Silver et al., 1994). We consider that calcium ions, whose mobility is restricted in space and time, establish “salt-bridges” among adjacent lipid molecules, and establishes transient pores that span the vesicle and plasma membrane lipid bilayers; the lifetime of that transient pore being completely dependent on duration of sufficient calcium ion levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ALES, E., TABARES, L., POYATO, J. M., VALERO, V., LINDAU, M. & ALVAREZ DE TOLEDO, G. (1999) High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism. Nature Cell Biol. 1, E3–E4.

    PubMed  Google Scholar 

  • ARMSTRONG, P. B. (1985) In Blood Cells of Marine Invertebrates (edited by COHEN, W. D.) pp. 253–258, NewYork: A.R. Liss.

    Google Scholar 

  • ATLAS, D. (2001) Functional and physical coupling of voltage-sensitive calcium channels with exocytotic proteins: Ramifications for the secretion mechanism. J. Neurochem. 77, 972–985.

    PubMed  Google Scholar 

  • AVERBAKH, A. & LOBYSHEV, V. I. (2000) Adsorption of polyvalent cations to bilayer membranes from negatively charged lipid: Estimating the lipid accessibility in the case of complete binding. J. Biochem. Biophys. Meth. 45, 23–44.

    PubMed  Google Scholar 

  • BINDER, H. & ZSCHORNIG, O. (2002) The effect of metal cations on the phase behavior and hydration characteristics of phospholipid membranes. Chem. Phys. Lipids 115, 39–61.

    PubMed  Google Scholar 

  • BIRKS, R. I., HUXLEY, H. E. & KATZ, B. (1960) The fine structure of the neuromuscular junction of the frog. J. Physiol. 134, 134–144.

    Google Scholar 

  • BLOBEL, G. & DOBBERSTEIN, B. (1975) Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J. Cell Biol. 67, 835–851.

    PubMed  Google Scholar 

  • BLOC, A., BUGNARD, E., DUNANT, Y., FALKVAIRANT, J., ISRAEL, M., LOCTIN, F. & ROULET, E. (1999) Acetylcholine synthesis and quantal release reconstituted by transfection of mediatophore and choline acetyltransferase cDNAs. Eur. J. Neurosci. 11, 1523–1534.

    PubMed  Google Scholar 

  • CAVALLI, V., CORTI, M. & GRUENBERG, J. (2001) Endocytosis and signaling cascades: A close encounter. FEBS Lett. 498, 190–196.

    PubMed  Google Scholar 

  • CHANTURIYA, A., SCARIA, P. & WOODLE, M. C. (2000) The role of membrane lateral tension in calcium-induced membrane fusion. J. Membr. Biol. 176, 67–75.

    PubMed  Google Scholar 

  • CHENG, Y., LIU, M., RONGCHANG, L., WANG, C., BAI, C. & WANG, K. (1999) Gadolinium induces domain and pore formation of human erythrocyte membrane: Anatomic force microscopic study. Biochim. Biophys. Acta. 142, 249–260.

    Google Scholar 

  • DAN, Y. & POO, M.-M. (1994) Calcium-dependent postsynaptic exocytosis: A possible mechanism for activitydependent synaptic modulation. J. Neurobiol. 25, 336–341.

    PubMed  Google Scholar 

  • DEL CASTILLO, J. & KATZ, B. (1954) Quantal components of the end-plate potential, J. Physiol. 124, 560–573.

    PubMed  Google Scholar 

  • DEL CASTILLO, J. & KATZ, B. (1957) La base ‘quantale'de la transmission neuro-musculaire. In Microphysiologie comparee des elements excitables. Coll. Internat. C.N.R.S. Paris 67, 245–258.

    Google Scholar 

  • DODGE, JR., F. A. & RAHAMIMOFF, R. (1967) Cooperative action of calcium ions in at the neuromuscular junction. J. Physiol. 193, 419–432.

    PubMed  Google Scholar 

  • DOWNING, S. W., SALO, W. L., SPITZER, R. H. & KOCH, E. A. (1981) The hagfish slime gland: A model system for studying the biology of mucus. Science 214, 1143–1145.

    PubMed  Google Scholar 

  • DUNCAN, R. R., GREAVES, J., WIEGAND, U. K., MATSKEVICH, I., BODAMMER, G., APPS, D. K., SHIPSTON, M. J. & CHOW, R. H. (2003) Functional and spatial segregation of secretory vesicle pools according to vesicle age. Nature 422, 176–180.

    PubMed  Google Scholar 

  • DUKE, T. A. J. & BRAY, D. (1999) Heightened sensitivity of a lattice of membrane receptors. Proc. Nat. Acad. Sci. U.S.A. 96, 10104–10108.

    Google Scholar 

  • DUNANT, Y. & ISRAEL, M. (2000) Neurotransmitter release at rapid synapses. Biochimie 82, 289–302.

    PubMed  Google Scholar 

  • DUZGUNES, N. & OHKI, S. (1981) Fusion of small unilamellar liposomes with phospholipid planar bilayer membranes and large single-bilayer vesicles. Biochim. Biophys. Acta 640, 734–747.

    PubMed  Google Scholar 

  • DUZGUNES, N., WILSCHUT, J., FRALEY, R. & PAPAHADJOPOULOS, D. (1981) Studies on the mechanism of membrane fusion. Role of head-group composition in calcium-and magnesium-induced fusion of mixed phospholipid vesicles. Biochim. Biophys. Acta 642, 182–195.

    PubMed  Google Scholar 

  • DVORAK, A. M. (1991) Basophil and mast cell degranulation and recovery. In Blood Cell Biochemistry (edited by Harris J. R.), vol. IV, pp. 340–377. New York: Plenum Press.

    Google Scholar 

  • DVORAK, A. M. (2000) Ultrastructural features of human basophil and mast cell secretory function. In Mast Cells and Basophils (edited by Marone, G., Lichtenstein, L. M. & Galli, S. J.) pp. 63–88, New York: Academic Press.

    Google Scholar 

  • EDER-COLLI, L. & AMATO, S. (1985) Membrane-bound choline acetyltransferase in Torpedo electric organ: A marker for synaptosomal plasma membranes? Neuroscience 15, 577–589.

    PubMed  Google Scholar 

  • ERXLEBEN, C. & KRIEBEL, M. E. (1988a) Subunit composition of the spontaneous miniature endplate currents at the mouse neuromuscular junction. J. Physiol. 400, 659–676.

    PubMed  Google Scholar 

  • ERXLEBEN, C. & KRIEBEL, M. E. (1988b) Characteristics of spontaneous miniature and subminiature end-plate currents at the mouse neuromuscular junction. J. Physiol. 400, 645–658.

    PubMed  Google Scholar 

  • FATT, P. & KATZ, B. (1952) Spontaneous subthreshold activity at motor nerve endings, J. Physiol. 117, 109–128.

    PubMed  Google Scholar 

  • FESCE, R., GROHOVAZ, F., VALTORTA, F. & MELDOLESI, J. (1994) Neurotransmitter release: Fusion or ‘kiss and run'. Trends Cell Biol. 4, 1–4.

    PubMed  Google Scholar 

  • FESCE, R. & MELDOLESI, J. (1999) Peeping at the vesicle kiss. Nat. Cell Biol. 1, 40–44.

    PubMed  Google Scholar 

  • FLOREY, E. & KRIEBEL, M. E. (1983) Changes in acetylcholine concentration, miniature end-plate potentials and synaptic vesicles in frog neuromuscular preparations during lanthanum treatment. Comp. Biochem. Physiol. C 75, 285–294.

    PubMed  Google Scholar 

  • FOGELSON, A. L. & ZUCKER, R. S. (1985) Presynaptic calcium diffusion from various arrays of single channels. Implications for transmitter release and synaptic facilitation. Biophys J. 48, 1003–1017.

    PubMed  Google Scholar 

  • FORSMAN, C. A. & ELFVIN, L. G. (1983) An ultrastructural study of presynaptic membrane specializations in sympathetic ganglia of 4-aminopyridine treated guinea pigs and rats. Brain Res. 280, 355–360.

    PubMed  Google Scholar 

  • FOX, G. Q. (1988) A morphometric analysis of synaptic vesicle distributions. Brain Res. 475, 103–117.

    PubMed  Google Scholar 

  • FOX, G. Q. (1996) A morphometric analysis of exocytosis in KCl-stimulated bovine chromaffin cells. Cell Tissue Res. 284, 303–316.

    PubMed  Google Scholar 

  • FOX, G. Q. & KRIEBEL, M. E. (1994) Dynamic responses of presynaptic terminal membrane pools to electrical simulation. Brain Research 660, 113–128.

    PubMed  Google Scholar 

  • FOX, G. Q. & KRIEBEL, M. E. (1997) Dynamic responses of presynaptic terminal membrane pools following KCl and sucrose stimulation. Brain Research 755, 47–62.

    PubMed  Google Scholar 

  • GAROFALO, R. S. & SATIR, B. H. (1984) Paramecium secretory granule content: Quantitative studies on in vitro expansion and its regulation by calcium and pH. J. Cell Biol. 99, 2193–2199.

    PubMed  Google Scholar 

  • GILLIGAN, D. M. & SATIR, B. H. (1983) Stimulation and inhibition of secretion in Paramecium: Role of divalent cations. J. Cell Biol. 97, 224–234.

    PubMed  Google Scholar 

  • GULLEY, R. L., LANDIS, D. M. & REESE, T. S. (1978) Internal organization of membranes at end bulbs of Held in the anteroventral cochlear nucleus. J. Comp. Neurol. 180, 707–741.

    PubMed  Google Scholar 

  • HAIMANN, C., TORRI-TARELLI, F., FESCE, R. & CECCARELLI, B. (1985) Measurement of quantal secretion induced by ouabain and its correlation with depletion of synaptic vesicles. J. Cell. Biol. 101, 1953–1965.

    PubMed  Google Scholar 

  • HARLOW, M. L., RESS, D., STOSCHEK, A., MARSHALL, R. M. & MCMAHAN, U. J. (2001) The architecture of active zone material at the frog's neuromuscular junction. Nature 409, 479–484.

    PubMed  Google Scholar 

  • HEUSER, J. E. & REESE, T. S. (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344.

    PubMed  Google Scholar 

  • HEUSER, J. E. & REESE, T. S. (1981) Structural changes after transmitter release at the frog neuromuscular junction. J. Cell Biol. 88, 564–580.

    PubMed  Google Scholar 

  • HEIDELBERGER, R., HEINEMANN, C., NEHER, E. & MATTHEWS, G. (1994) Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371, 513–515.

    PubMed  Google Scholar 

  • HEUSER, J. E., REESE, T. S., DENNIS, M. J., JAN, Y., JAN, L. & EVANS, L. (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell Biol. 81, 275–300.

    PubMed  Google Scholar 

  • HOFFMAN, P., SANDHOFF, K. & MARSH, D. (2000) Comparitive dynamics and location of chain spin-labeled sphingomyelin and phosphatidylcholine in dimyistoyl phosphatidylcholine membranes studied by EPR spectroscopy. Biochim. Biophys. Acta 1468, 359–366.

    PubMed  Google Scholar 

  • HORRIGAN, F. T. & BOOKMAN, R. J. (1994) Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells. Neuron 13, 1119–1129.

    PubMed  Google Scholar 

  • HUNT, J. M. & SILINSKY, E. M. (1993) Ionomycin-induced acetylcholine release and its inhibition by adenosine at frog motor nerve endings. Br. J. Pharmacol. 110, 828–832.

    PubMed  Google Scholar 

  • HUSTER, D., ARNOLD, K. & GAWRISCH, K. (2000) Strength of Ca2+ binding to retinal lipid membranes: Consequences for lipid organization. Biophys. J. 78, 3011–3018.

    PubMed  Google Scholar 

  • KATZ, B. & MILEDI, R. (1979) Estimates of quantal content during ‘chemical potentiation'of transmitter release. Proc. Royal Soc. Lond. B. 205, 369–378.

    Google Scholar 

  • KITA, H. & VAN DER KLOTZ, W. (1976) Effects of the ionophore X-537A on acetylcholine release at the frog neuromuscular junction. J. Physiol. 259, 177–198.

    PubMed  Google Scholar 

  • KORLACH, J., SCHWILLE, P., WEBB, W. W. & FEIGENSON, G. W. (1999) Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Nat. Acad. Sci. U.S.A. 96, 8461–8466.

    Google Scholar 

  • KOVAL, L. M., YAVORSKAYA, E. N. & LUKYANETZ, E. A. (2001) Electron microscopic evidence for multiple types of secretory vesicles in bovine chromaffin cells. Gen. Comp. Endocrinol. 121, 261–277.

    PubMed  Google Scholar 

  • KRIEBEL, M., KELLER, B. SILVER, R. B., FOX, G. Q. & PAPPAS, G. D. (2001) Porocytosis: Quantal synaptic secretion by an array of pores. Brain Research. 38, 20–32.

    Google Scholar 

  • KUFFLER, S. W. & YOSHIKAMI, D. (1975) The number of transmitter molecules in a quantum: An estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. J. Physiol. 251, 465–482.

    PubMed  Google Scholar 

  • LENTZ, B. R., MCINTYRE, G. F., PARKS, D. J., YATES, J. C. & MASSENBURG, D. (1992) Bilayer curvature and certain amphipaths promote poly(ethylene glycol)-induced fusion of dipalmitoylphosphatidylcholine unilamellar vesicles. Biochemistry 31, 2643–2653.

    PubMed  Google Scholar 

  • LLINÁS, R. & HEUSER, J. (1977) Depolarization-release coupling systems in neurons. Neurosci. Res. Progr. Bulletin 15, 555–587.

    Google Scholar 

  • LLINÁS, R., SUGIMORI, M. & SILVER, R. B. (1991) Imaging preterminal calcium concentration Microdomains in the Squid Giant Synapse. Biol. Bull. 181, 316–317.

    Google Scholar 

  • LLINÁS, R., SUGIMORI, M. & SILVER, R. B. (1992) Microdomains of high calcium concentration in a presynaptic terminal. Science 256, 677–679.

    PubMed  Google Scholar 

  • LOWEN, S. B., CASH, S. S., POO, M.-M. & TEICH, M. C. (1997) Quantal neurotransmitter secretion rate exhibits fractal behavior. J. Neurosci. 17, 5666–5677.

    PubMed  Google Scholar 

  • MATTHIESEN, S. H., SHENOY, S. M., KIM, K., SINGER, R. H. & SATIR, B. H. (2001) A parafusin-related Toxoplasma protein in Ca2+-regulated secretory organelles. Eur. J. Cell Biol. 80, 775–783.

    PubMed  Google Scholar 

  • MILEDI, R. (1967) Spontaneous synaptic potentials and quantal release of transmitter in the stellate ganglion of the squid. J. Physiol. 192, 379–406.

    PubMed  Google Scholar 

  • NEHER, E. & MARTY, A. (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc. Natl. Acad. Sci. U.S.A. 79, 6712–6716.

    PubMed  Google Scholar 

  • OHKI, S. (1984) Effects of divalent cations, temperature, osmotic pressure gradient, and vesicle curvature on phosphatidylserine vesicle fusion. J. Membr. Biol. 77, 265–275.

    PubMed  Google Scholar 

  • ORTIZ, A., KILLIAN, J. A., VERKLEIJ, A. J. & WILSCHUT, J. (1999) Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations. Biophys. J. 77, 2003–2014.

    PubMed  Google Scholar 

  • PALAY, S. (1992) A concatenation of accidents. In Neurosciences: Paths of Discovery, II. pp. 191–212. New York: Birkhauser.

    Google Scholar 

  • PAPPAS, G. & KRIHO, V. (1988). Fine structural localization of Ca++-ATPase activity at the frog neuromuscular junction. J. Neurocytol. 17, 417–423.

    PubMed  Google Scholar 

  • PAPPAS, G. D., KRIHO, V. & BECKER, R. P. (1988) Fine structural correlates of calcium dynamics in the presynaptic terminal. In Cellular and Molecular Basis of Synaptic Transmission (edited by ZIMMERMAN, H.), pp. 121–136, New York: Springer-Verlag.

    Google Scholar 

  • PAWSON, P. A., GRINNELL, A. D. & WOLOWSKE, B. (1998) Quantitative freeze-fracture analysis of the frog neuromuscular junction synapse. I. Naturally occurring variability in active zone structure. J. Neurocytol. 5, 361–377.

    Google Scholar 

  • PEACOCK, A. R. (1983) The Physical Chemistry of Biological Organization, Chapter 4. New York: Oxford Science Publications.

    Google Scholar 

  • PEAKER, M. & WILDE, C. J. (1996) Feedback control of milk secretion frommilk. J.MammaryGland Biol. Neoplasia 1, 307–315

    Google Scholar 

  • PLATTNER, H., ARTALEJO, A. R. & NEHER, E. (1997) Ultrastructural organization of bovine chromaffin cell cortex-analysis by cryofixation and morphometry of aspects pertinent to exocytosis. J. Cell Biol. 139, 1709–1717.

    PubMed  Google Scholar 

  • PUMPLIN, D. W., REESE, T. S. & LLINÁS, R. (1981) Are the presynaptic membrane particles the calcium channels? Proc. Nat. Acad. Sci. U.S.A. 78, 7210–7213.

    Google Scholar 

  • PUSKIN, J. S. (1977) Divalent cation binding to phospholipids: An EPR study. J. Membr. Biol. 35, 39–55.

    PubMed  Google Scholar 

  • PUSKIN, J. S. & MARTIN, T. (1979) Divalent cation binding to phospholipid vesicles. Dependence on temperature and lipid fluidity. Bochim, Biophys. Acta 552, 53–65.

    Google Scholar 

  • RAVOO, B. J., WERINGA, W. D. & ENGBERTS, J. B. (1999) Membrane fusion in vesicles of oligomerizable lipids. Biophys. J. 76, 374–386.

    PubMed  Google Scholar 

  • ROSE, S. J., PAPPAS, G. D. & KRIEBEL, M. E. (1978) The fine structure of identified frog neuromuscular junctions in relation to synaptic activity. Brain Research 144, 213–239.

    PubMed  Google Scholar 

  • RUPERT, L. A., VAN BREEMEN, J. F., VAN BRUGGEN, E. F., ENGBERTS, J. B. & HOEKSTRA D. (1987) Calcium-induced fusion of didodecylphosphate vesicles: The lamellar to hexagonal II (HII) phase transition. J. Membr. Biol. 95, 255–263.

    PubMed  Google Scholar 

  • SAGEN, J. & PAPPAS, G. D. (1987) Morphological and functional correlates of chromaffin cell transplants in CNS pain modulatory regions. Ann. N.Y. Acad. Sci. 495, 306–333.

    PubMed  Google Scholar 

  • SATIR, B. H. & OBERG, S. G. (1978) Paramecium fusion rosettes: Possible function as Ca2+ gates. Science 199, 536–538.

    PubMed  Google Scholar 

  • SATIR, P. & SATIR, B. (1974) Partition coefficient of membrane particles in the fusion rosette. Exp. Cell Res. 89, 404–407.

    PubMed  Google Scholar 

  • SCHAEFFER, S. F., RAVIOLA, E. & HEUSER, J. E. (1982) Membrane specializations in the outer plexiform layer of the turtle retina. J. Comp. Neurol. 204, 253–267.

    PubMed  Google Scholar 

  • SCHINDLER, H. (1980) Autocatalytic transport of the peptide antibiotics suzukacillin and alamethicin across lipid membranes. FEBS Lett. 122, 77–79.

    PubMed  Google Scholar 

  • SCHNEGGENBURGER, R., MEYER, A. C. & NEHER, E. (1999) Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse. Neuron. 23, 399–409.

    PubMed  Google Scholar 

  • SCHNEGGENBURGER, R., SAKABA, T. & NEHER, E. (2002) Vesicle pools and short-term synaptic depression: Lessons from a large synapse. Trends Neurosci. 25, 206–212.

    PubMed  Google Scholar 

  • SCHEUERHOLZ, T. & SCHINDLER (1991) Lipid-protein surface films generated from membrane vesicles: Selfassembly, composition, and film structure. Eur. Biophys. J. 20, 71–78.

    PubMed  Google Scholar 

  • SCHIKORSKI, T. & STEVENS, C. F. (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17, 5858–5867.

    PubMed  Google Scholar 

  • SAEGUSA, C., FUKUDA, M. & MIKOSHIBA, K. (2002) Synaptotagmin V is targeted to dense-core vesicles that undergo calcium-dependent exocytosis in PC12 cells. J. Biol. Chem. 277, 24499–24505.

    PubMed  Google Scholar 

  • SEAGAR, M., LEVEQUE, C., CHARVIN, N., MARQUEZE, B., MARTIN-MOUTOT, N., BOUDIER, J. A., BOUDIER, J. L., SHOJI-KASAI, Y., SATO, K, & TAKAHASHI, M. (1999) Interactions between proteins implicated in exocytosis and voltage-gated calcium channels. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 289–297.

    PubMed  Google Scholar 

  • SEGAWA, A., LOFFREDO, F., PUXEDDU, R., YAMASHINA, S., TESTA R IVA, F. & RIVA A. (1998) Exocytosis in human salivary glands visualized by high-resolution scanning electron microscopy. Cell Tissue Res. 291, 325–336.

    PubMed  Google Scholar 

  • SILVER, R. B., KRIEBEL, M., KELLER, B. & PAPPAS, G. D. (2001) Porocytosis: Quantal Synaptic Secretion at the Neuromuscular Junction. Biol. Bulletin 201, 263–264.

    Google Scholar 

  • SILVER, R. B. (1996) Calcium, BOBs, QEDs, microdomain and a cellular decision: Control of mitotic cell division in sand dollar blastomeres. Cell Calcium 20, 161–179.

    PubMed  Google Scholar 

  • SILVER, R. B., SUGIMORI, M., LANG, E. J. & LLINÁS, R. (1994) Time resolved imaging of Ca2+-dependent aequorin luminescence of microdomains and QEDs in pre-synaptic terminals. Biol. Bulletin 187, 293–299.

    Google Scholar 

  • SILVIUS, J. R. & GAGNE, J. (1984) Calcium-induced fusion and lateral phase separations in phosphatidylcholinephosphatidylserine vesicles. Correlation by calorimetric and fusion measurements. Biochemistry 23, 3241–3247.

    Google Scholar 

  • SIMON, S. M. & LLINÁS, R. R. (1985) Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys. J. 48, 485–498.

    PubMed  Google Scholar 

  • SNEL, M. M. & MARSH, D. (1993) Accessibility of spinlabeled phospholipids in anionic and zwitterionic bilayer membranes to paramagnetic relaxation agents. Continuous wave power saturation EPR studies. Biochim. Biophys. Acta 1150, 155–161.

    PubMed  Google Scholar 

  • SUGIMORI, M., LANG, E.J., SILVER, R. B. & LLINÁS, R. (1994) High resolution measurement of the time course of calcium-concentration microdomains at squid presynaptic terminals. Biol. Bulletin 187, 300–303.

    Google Scholar 

  • SUNDLER, R. & PAPAHADJOPOULOS, D. (1981) Control of membrane fusion by phospholipid head groups. I. Phosphatidate/phosphatidylinositol specificity. Biochim. Biophys. Acta 649, 743–750.

    PubMed  Google Scholar 

  • TARASKA, J. W., PERRAIS, D., OHARA-IMAIZUMI, M., NAGAMATSU, S. & ALMERS, W. (2003) Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc. Natl. Acad. Sci. U.S.A. 100, 2070–2075.

    PubMed  Google Scholar 

  • TOKUNAGA, A., AKERT, K. & SANDRI, C. (1979) Three types of membrane modulations during transmitter release in rat spinal cord synapses. Neurosci. Lett. 12, 147–152.

    PubMed  Google Scholar 

  • TRAVIS, E. R. & WIGHTMAN, R. M. (1999) Spatiotemporal resolution of exocytosis from individual cells. Ann. Rev. Biophys. Biomol. Struct. 27, 77–103.

    Google Scholar 

  • UVNAS, B. & ABORG, C. H. (1980) Possible role of nerve impulse induced sodium ion flux in a proposed multivesicular fractional release of adrenaline and noradrenaline from the chromaffin cell. Acta Physiol. Scand. 109, 363–368.

    PubMed  Google Scholar 

  • WALTER, P., GILMORE, R. & BLOBEL, G. (1984) Protein translocation across the endoplasmic reticulum. Cell 38, 5–8.

    PubMed  Google Scholar 

  • WEIKL, T.R. & LIPOWSKY, R. (2001) Adhesion-induced phase behavior of multicomponent membranes. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 64, 011903.

    PubMed  Google Scholar 

  • WILSCHUT, J., DUZGUNES, N., HOEKSTRA, D. & PAPAHADJOPOULOS, D. (1985) Modulation of membrane fusion by membrane fluidity: Temperature dependence of divalent cation induced fusion of phosphatidylserine vesicles. Biochemistry 24, 8–14.

    PubMed  Google Scholar 

  • WILSCHUT, J., DUZGUNES, N. & PAPAHADJOPOULOS, D. (1981) Calcium/magnesium specificity in membrane fusion: Kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature. Biochemistry 20, 3126–3133.

    PubMed  Google Scholar 

  • WINFREE, A. T. (1977) Spatial and temporal organization in the Zhabotinsky reaction. Adv. Biol. Med. Phys. 16, 115–136.

    PubMed  Google Scholar 

  • ZIMMERMAN, H. & DENSTON, C. R. (1977) Recycling of synaptic vesicles in the cholinergic synapses of the Torpedo electric organ during induced transmitter release. Neuroscience 2, 695–714.

    PubMed  Google Scholar 

  • ZIMMERMANN, H. (1982) In Neurotransmitter Vesicles, pp. 241–259. New York: Academic Press.

    Google Scholar 

  • ZUCKER, R. S. & FOGELSON, A. L. (1986) Relationship between transmitter release and presynaptic calcium influx when calcium enters through discrete channels. Proc. Natl. Acad. Sci. U.S.A. 83, 3032–3036.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silver, R.B., Kriebel, M.E., Keller, B. et al. Porocytosis: Secretion from small and medium-diameter vesicles and vesicle arrays without membrane fusion. J Neurocytol 32, 277–291 (2003). https://doi.org/10.1023/B:NEUR.0000010086.07636.df

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEUR.0000010086.07636.df

Keywords

Navigation