Skip to main content
Log in

Effects of congenital deafness in the cochlear nuclei of Shaker-2 mice: An ultrastructural analysis of synapse morphology in the endbulbs of Held

  • Published:
Journal of Neurocytology

Abstract

It is well established that manipulation of the sensory environment can significantly alter central auditory system development. For example, congenitally deaf white cats exhibit synaptic alterations in the cochlear nucleus distinct from age-matched, normal hearing controls. The large, axosomatic endings of auditory nerve fibers, called endbulbs of Held, display reduced size and branching, loss of synaptic vesicles, and a hypertrophy of the associated postsynaptic densities on the target spherical bushy cells. Such alterations, however, could arise from the cat's genetic syndrome rather than from deafness. In order to examine further the role of hearing on synapse development, we have studied endbulbs of Held in the shaker-2 (sh2) mouse. These mice carry a point mutation on chromosome 11, affecting myosin 15 and producing abnormally short stereocilia in hair cells of the inner ear. The homozygous mutant mice are born deaf and develop perpetual circling behavior, although receptor cells and primary neurons remain intact at least for the initial 100 days of postnatal life. Endbulbs of Held in 7-month old, deaf sh2 mice exhibited fewer synaptic vesicles in the presynaptic ending, the loss of intercellular cisternae, and a hypertrophy of associated postsynaptic densities. On average, postsynaptic density area for sh2 endbulbs was 0.23 ± 0.19 μm2 compared to 0.07 ± 0.04 μm2 (p < 0.001) for age-matched, hearing littermates. These changes at the endbulb synapse in sh2 mice resemble those of the congenitally deaf white cat and are consistent with the idea that they represent a generalized response to deafness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ANDERSON, D. W., PROBST, F. J., BELYANTSEVA, I. A., FRIDELL, R. A., BEYER, L., MARTIN, D. M., WU, D., KACHAR, B., FRIEDMAN, T. B., RAPHAEL, Y. & CAMPER, S. A. (2000) The motor and tail regions of myosin XV are critical for normal structure and function of auditory and vestibular hair cells. Hum. Mol. Genet. 9, 1729–1738.

    PubMed  Google Scholar 

  • BENES, F. M., PARKS, T. N. & RUBEL, E. W. (1977) Rapid dendritic atrophy following deafferentation: An EM morphometric analysis. Brain Res. 122, 1–13.

    PubMed  Google Scholar 

  • BENSON, T. E., RYUGO, D. K. & HINDS, J. W. (1984) Effects of sensory deprivation on the developing mouse olfactory system: A light and electron microscopic, morphometric analysis. J. Neurosci. 4, 638–653.

    PubMed  Google Scholar 

  • BERGSMA, D. & BROWN, K. (1971) White fur, blue eyes, and deafness in the domestic cat. J. Hered. 62, 171–185.

    PubMed  Google Scholar 

  • BEYER, L. A., ODEH, H., PROBST, F. J., LAMBERT, E. H., DOLAN, D. F., CAMPER, S. A., KOHRMAN, D. C. & RAPHAEL, Y. (2000) Hair cells in the inner ear of the pirouette and shaker 2 mutant mice. J. Neurocytol. 29, 227–240.

    PubMed  Google Scholar 

  • BINNS, K. E., WITHINGTON, D. J. & KEATING, M. J. (1992) Post-crucial period effects of auditory experience and deprivation on the guinea-pig superior collicular map of auditory space. Eur. J. Neurosci. 4, 1333–1342.

    PubMed  Google Scholar 

  • BOSHER, S. & HALLPIKE, C. (1965) Observations on the histological features, development and pathogenesis of the inner ear degeneration of the deaf white cat. Proc. Roy. Soc. B 162, 147–170.

    Google Scholar 

  • BURKARD, R. (1984)Soundpressure level measurement and spectral analysis of brief acoustic transients. Electroenceph. clin. Neurophysiol. 57, 83–91.

    PubMed  Google Scholar 

  • CANT, N. B. & MOREST, D. K. (1979) The bushy cells in the anteroventral cochlear nucleus of the cat. A study with the electron microscope. Neurosci. 4, 1925–1945.

    Google Scholar 

  • COHEN, E. S. (1972) Synaptic organization of the caudal cochlear nucleus of the cat: A light and electron microscopical study. Doctoral Thesis, Cambridge, MA: Harvard University.

    Google Scholar 

  • DEITCH, J. S. & RUBEL, E. W. (1984) Afferent influences on brain stem auditory nuclei of the chicken: Time course and specificity of dendritic atrophy following deafferentation. J. Comp. Neurol. 229, 66–79.

    PubMed  Google Scholar 

  • DEITCH, J. S. & RUBEL, E. W. (1989a) Rapid changes in ultrastructure during deafferentation-induced dendritic atrophy. J. Comp. Neurol. 281, 234–258.

    PubMed  Google Scholar 

  • DEITCH, J. S. & RUBEL, E. W. (1989b) Changes in neuronal cell bodies in N. laminaris during deafferentationinduced dendritic atrophy. J. Comp. Neurol. 281, 259–268.

    PubMed  Google Scholar 

  • DEOL, M. S. (1954) The anomalies of the labyrinth of the mutants varitint-waddler, shaker-2 and jerker in the mouse. J. Genet. 52, 562–588.

    Google Scholar 

  • ELKABES, S., CHERRY, J. A., SCHOUPS, A. A. & BLACK, I. B. (1993) Regulation of protein kinase C activity by sensory deprivation in the olfactory and visual systems. J. Neurochem. 60, 1835–1842.

    PubMed  Google Scholar 

  • FEKETE, D. M., ROUILLER, E. M., LIBERMAN, M. C. & RYUGO, D. K. (1984) The central projections of intracellularly labeled auditory nerve fibers in cats. J. Comp. Neurol. 229, 432–450.

    PubMed  Google Scholar 

  • GANTZ, B., TYLER, R., WOODWORTH, G., TYEMURRAY, N. & FRYAUF-BERTSCHY, H. (1994) Results of multichannel cochlear implants in congenital and acquired prelingual deafness in children: Five year follow up. Am. J. Otol. 15, 1–8.

    Google Scholar 

  • GENTSCHEV, T. & SOTELO, C. (1973) Degenerative patterns in the ventral cochlear nucleus of the rat after primary deafferentation.Anultrastructural study. Brain Res. 62, 37–60.

    PubMed  Google Scholar 

  • GOLD, J. I. & KNUDSEN, E. I. (1999) Hearing impairment induces frequency-specific adjustments in auditory spatial tuning in the optic tectum of young owls. J. Neurophysiol. 82, 2197–2209.

    PubMed  Google Scholar 

  • GOODMAN, C. S. & SHATZ, C. J. (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72, 77–98.

    PubMed  Google Scholar 

  • GULLEY, R. L., LANDIS, D. M. D. & REESE, T. S. (1978) Internal organizaton of memebranes at endbulbs of Held in the anteroventral cochlear nucleus. J. Comp. Neurol. 180, 707–742.

    PubMed  Google Scholar 

  • HASEGAWA, T., DOI, K., FUSE, Y., FUJII, K., UNO, Y., NISHIMURA, H. & KUBO, T. (2000) Deafness induced up-regulation of glur2/3 and nr1 in the spiral ganglion cells of the rat cochlea. neuroreport 11, 2515–2519.

  • HU, B. R., PARK, M., MARTONE, M. E., FISCHER, W. H., ELLISMAN, M. H. & ZIVIN, J. A. (1998) Assembly of proteins to postsynaptic densities after transient cerebral ischemia. J. Neurosci. 18, 625–633.

    PubMed  Google Scholar 

  • IBATA, Y. & PAPPAS, G. D. (1976) The fine structure of synapses in relation to the large spherical neurons in the anterior ventral cochlear (sic) of the cat. J. Neurocytol. 5, 395–406.

    PubMed  Google Scholar 

  • JULIANO, S. L., ESLIN, D. E. & TOMMERDAHL, M. (1994) Developmental regulation of plasticity in cat somatosensory cortex. J. Neurophysiol. 72, 1706–1716.

    PubMed  Google Scholar 

  • KILLACKEY, H. P., BELFORD, G., RYUGO, R. & RYUGO, D. K. (1976) Anomalous organization of thalamocortical projections consequent to vibrissae removal in the newborn rat and mouse. Brain Res. 104, 309–315.

    PubMed  Google Scholar 

  • KRAL, A., HARTMANN, R., TILLEIN, J., HEID, S. & KLINKE, R. (2000) Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer-specific manner. Cereb. Cortex 10, 714–726.

    PubMed  Google Scholar 

  • LARSEN, S. A. & KIRCHOFF, T. M. (1992) Anatomical evidence of plasticity in the cochlear nuclei of deaf white cats. Exp. Neurol. 115, 151–157.

    PubMed  Google Scholar 

  • LEAKE, P. A., HRADEK, G. T., REBSCHER, S. J. & SNYDER, R. L. (1997) Chronic intracochlear electrical stimulation induces selective survival of spiral ganglion neurons in neonatally deafened cats. Hear. Res. 54, 251–271.

    Google Scholar 

  • LENN, N. J. & REESE, T. S. (1966) The fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus. Am. J. Anat. 118, 375–390.

    PubMed  Google Scholar 

  • LEVAY, S., WIESEL, T. N. & HUBEL, D. H. (1980) The development of ocular dominance columns in normal and visually deprived monkeys. J. Comp. Neurol. 191, 1–51.

    PubMed  Google Scholar 

  • LIANG, Y., WANG, A., BELYANTSEVA, I. A., ANDERSON, D. W., PROBST, F. J., BARBER, T. D., MILLER, W., TOUCHMAN, J. W., JIN, L., SULLIVAN, S. L., SELLERS, J. R., CAMPER, S. A., LLOYD, R. V., KACHAR, B., FRIEDMAN, T. B. & FRIDELL, R. A. (1999) Characterization of the human and mouse unconventional myosin XV genes responsible for hereditary deafness DFNB3 and shaker 2. Genomics 61, 243–258.

    PubMed  Google Scholar 

  • LIMB, C. J. & RYUGO, D. K. (2000) Primary axosomatic endings in the anteroventral cochlear nucleus of mice: Development and deafness. JARO 1, 103–119.

    PubMed  Google Scholar 

  • LIPPE, W. R., STEWARD, O. & RUBEL, E. W. (1980) The effect of unilateral basilar papilla removal upon nucleus laminaris and magnocellularis of the chick examined with [3H]2-deoxy-D-glucose autoradiography. Brain Res. 196, 43–58.

    PubMed  Google Scholar 

  • LORENTE DE NÓ, R. (1981) The Primary Acoustic Nuclei. New York: Raven Press.

    Google Scholar 

  • MAIR, I. W. (1973) Hereditary deafness in the white cat. Acta. Otolaryngol. 314, 1–48.

    Google Scholar 

  • MEISAMI, E. (1978) Influence of early anosmia on the developing olfactory bulb. Prog. Brain Res. 48, 211–230.

    PubMed  Google Scholar 

  • MOORE, D. R., HUTCHINGS, M. E., KING, A. J. & KOWALCHUK, N. E. (1989) Auditory brain stem of the 242 LEE, CAHILL and RYUGO ferret: Some effects of rearing with a unilateral ear plug on the cochlea, cochlear nucleus, and projections to the inferior colliculus. J. Neurosci. 9, 1213–1222.

    PubMed  Google Scholar 

  • MOORE, D. R. & KOWALCHUK, N. E. (1988) Auditory brainstem of the ferret: Effects of unilateral cochlear lesions on cochlear nucleus volume and projections to the inferior colliculus. J. Comp. Neurol. 272, 503–515.

    PubMed  Google Scholar 

  • MOSTAFAPOUR, S. P., COCHRAN, S. L., DEL PUERTO, N. M. & RUBEL, E. W. (2000) Patterns of cell death in mouse anteroventral cochlear nucleus neurons after unilateral cochlea removal. J. Comp. Neurol. 426, 561–571.

    PubMed  Google Scholar 

  • NEVILLE, H. & BAVELIER, D. (2002)Humanbrain plasticity: Evidence from sensory deprivation and altered language experience. Prog. Brain Res. 138, 177–188.

    PubMed  Google Scholar 

  • NORDEEN, K. W., KILLACKEY, H. P. & KITZES, L. M. (1983) Ascending projections to the inferior colliculus following unilateral cochlear ablation in the neonatal gerbil, Meriones unguiculatus. J. Comp. Neurol. 214, 144–153.

    PubMed  Google Scholar 

  • PARKS, T. N. (1979) Afferent influences on the development of the brain stem auditory nuclei of the chicken: Otocyst ablation. J. Comp. Neurol. 183, 665–677.

    PubMed  Google Scholar 

  • POWELL, T. P. S. & ERULKAR, S. D. (1962) Transneuronal cell degeneration in the auditory relay nuclei of the cat. J. Anat. 96, 219–268.

    Google Scholar 

  • PROBST, F. J., CHEN, K. S., ZHAO, Q., WANG, A., FRIEDMAN, T. B., LUPSKI, J. R. & CAMPER, S. A. (1999b) A physical map of the mouse shaker-2 region contains many of the genes commonly deleted in Smith-Magenis syndrome (del17p11.2p11.2). Genomics 55, 348–352.

    PubMed  Google Scholar 

  • PROBST, F. J., FRIDELL, R. A., RAPHAEL, Y., SAUNDERS, T. L., WANG, A., LIANG, Y., MORELL, R. J., TOUCHMAN, J. W., LYONS, R. H., NOBENTRAUTH, K., FRIEDMAN, T. B. & CAMPER, S. A. (1998) Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280, 1444–1447.

    PubMed  Google Scholar 

  • PUJOL, R., REBILLARD, M. & REBILLARD, G. (1977) Primary neural disorders in the deaf white cat cochlea. Acta Otolaryngol. 83, 59–64.

    PubMed  Google Scholar 

  • QUITTNER, A. L. & STECK, J. T. (1991) Predictors of cochlear implant use in children. Am. J. Otol. 12 (Suppl), 89–94.

    PubMed  Google Scholar 

  • REBILLARD, M., PUJOL, R. & REBILLARD, G. (1981b) Variability of the hereditary deafness in the white cat. II. Histology. Hear. Res. 5, 189–200.

    Google Scholar 

  • REBILLARD, M., REBILLARD, G. & PUJOL, R. (1981a) Variability of the hereditary deafness in the white cat. I. Physiology. Hearing Res. 5, 179–181.

    Google Scholar 

  • REDD, E. E., PONGSTAPORN, T. & RYUGO, D. K. (2000) The effects of congenital deafness on auditory nerve synapses and globular bushy cells in cats. Hear. Res. 147, 160–174.

    PubMed  Google Scholar 

  • REES, S., GULDNER, F. H. & ATIKIN, L. (1985) Activity dependent plasticity of postsynaptic density structure in the ventral cochlear nucleus of the rat. Brain Res. 325, 370–374.

    PubMed  Google Scholar 

  • RUBEL, E. W. (1984) Ontogeny of auditory system function. Ann. Rev. Physiol. 46, 213–229.

    Google Scholar 

  • RUBEL, E. W. & FRITZSCH, B. (2002) Auditory system development: Primary auditory neurons and their targets. Ann. Rev. Neurosci. 25, 51–101.

    PubMed  Google Scholar 

  • RUBEL, E. W., HYSON, R. L. & DURHAM, D. (1990) Afferent regulation of neurons in the brain stem auditory system. J. Neurobiol. 21, 169–196.

    PubMed  Google Scholar 

  • RUBINSTEIN, J. T., PARKINSON, W. S., TYLER, R. S. & GANTZ, B. J. (1999) Residual speech recognition and cochlear implant performance: Effects of implantation criteria. Am. J. Otol. 20, 445–452.

    PubMed  Google Scholar 

  • RYUGO, D. K., CAHILL, H. B., ROSE, L. S., ROSENBAUM, B. T., SCHROEDER, M. E., & WRIGHT, A. L. (2003) Separate forms of pathology in the cochlea of congenitally deaf white cats. Hear. Res.

  • RYUGO, D. K. & FEKETE, D. M. (1982) Morphology of primary axosomatic endings in the anteroventral cochlear nucleus of the cat: A study of the endbulbs of Held. J. Comp. Neurol. 210, 239–257.

    PubMed  Google Scholar 

  • RYUGO, D. K., LIMB, C. J. & REDD, E. E. (2000) Synaptic plasticity: The impact of the environment on the brain as it relates to cochlear implants. In Cochlear Implants: Principles and Practices (edited by Niparko, J. K., Kirk, K. I., Mellon, N. K., Robbins, A. M., Tucci, D. L. & Wilson, B. S.) pp. 33–56. Philadelphia: Lippincott Williams & Williams.

    Google Scholar 

  • RYUGO, D. K. & PARKS, T. N. (2003) Innervation of the cochlear nucleus in birds and mammals. Brain Res. Bull. 60, 435–456.

    PubMed  Google Scholar 

  • RYUGO, D. K., PONGSTAPORN, T., HUCHTON, D. M. & NIPARKO, J. K. (1997) Ultrastructural analysis of primary endings in deaf white cats: Morphologic alterations in endbulbs of Held. J. Comp. Neurol. 385, 230–244.

    PubMed  Google Scholar 

  • RYUGO, D. K., ROSENBAUM, B. T., KIM, P. J., NIPARKO, J. K. & SAADA, A. A. (1998) Single unit recordings in the auditory nerve of congenitally deaf white cats: Morphological correlates in the cochlea and cochlear nucleus. J. Comp. Neurol. 397, 532–548.

    PubMed  Google Scholar 

  • RYUGO, D. K. & SENTO, S. (1996) Auditory nerve terminals and cochlear nucleus neurons: Endbulbs of Held and spherical bushy cells. In Advances in Speech, Hearing and Language Processing (edited by Ainsworth, W. A.), pp. 19–40. London: Jai Press Ltd.

    Google Scholar 

  • RYUGO, D. K., WU, M. M. & PONGSTAPORN, T. (1996) Activity-related features of synapse morphology: A study of endbulbs of Held. J. Comp. Neurol. 365, 141–158.

    PubMed  Google Scholar 

  • SAADA, A. A., NIPARKO, J. K. & RYUGO, D. K. (1996) Morphological changes in the cochlear nucleus of congenitally deaf white cats. Brain Res. 736, 315–328.

    PubMed  Google Scholar 

  • SCHEIBE, A. (1892) A case of deaf-mutism, with auditory atrophy and anomalies of development in the membranous labyrinth of both ears. Arch. Otolaryngol. 21, 12–22.

    Google Scholar 

  • SCHWARTZ, I. R. & HIGA, J. F. (1982) Correlated studies of the ear and brainstem in the deaf white cat: Changes in the spiral ganglion and the medial superior olivary nucleus. Acta Otolaryngol. 93, 9–18.

    PubMed  Google Scholar 

  • SHENG, M. (2001) Molecular organization of the postsynaptic specialization. Proc. Natl. Acad. Sci. 98, 7058–7061.

    PubMed  Google Scholar 

  • SUGA, F. & HATTLER, K. W. (1970) Physiological and histopathological correlates of hereditary deafness in animals. Laryngoscope 80, 81–104.

    PubMed  Google Scholar 

  • TIBUSSEK, D., MEISTER, H., WALGER, M., FOERST, A. & VON WEDEL, H. (2002) Hearing loss in early infancy Congenital deafness in the cochlear nuclei of Shaker-2 mice 243 affects maturation of the auditory pathway. Dev. Med. Child Neurol. 44, 123–129.

    PubMed  Google Scholar 

  • TOLBERT, L. P. & MOREST, D. K. (1982c) The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: Electron microscopy. Neurosci. 7, 3053–3067.

    Google Scholar 

  • TRUNE, D. R. (1982a) Influence of neonatal cochlear removal on the development of mouse cochlear nucleus: I. Number, size, and density of its neurons. J. Comp. Neurol. 209, 409–424.

    PubMed  Google Scholar 

  • TRUNE, D. R. (1982b) Influence of neonatal cochlear removal on the development of mouse cochlear nucleus: II. Dendritic morphometry of its neurons. J. Comp. Neurol. 209, 425–434.

    PubMed  Google Scholar 

  • TUCCI, D. L. & NIPARKO, J. K. (2000) Medical and surgical aspects of cochlear implantation. In Cochlear Implants: Principles and Practices (edited by Niparko, J. K., Kirk, K. I., Mellon, N. K., Robbins, A. M., Tucci, D. L. & Wilson, B. S.) pp. 189–221. New York: Lippincott Williams & Wilkins.

    Google Scholar 

  • TYLER, R. S. & SUMMERFIELD, A. Q. (1996) Cochlear implantation: Relationships with research on auditory deprivation and acclimatization. Ear Hear. 17 (Suppl), 38s–50s.

    PubMed  Google Scholar 

  • VAN DER LOOS, H. & WOOLSEY, T. A. (1973) Somatosensory cortex: Structural alterations following early injury to sense organs. Science 179, 395–398.

    PubMed  Google Scholar 

  • WALTZMAN, S., FISHER, S., NIPARKO, J. K. & COHEN, N. (1994) Predictors of postoperative performance with cochlear implants. Ann. Otol. Rhinol. Laryngol. 104, 15–18.

    Google Scholar 

  • WALTZMAN, S. B., COHEN, N. L. & SHAPIRO, W. H. (1992) Use of a multichannel cochlear implant in the congenitally and prelingually deaf population. Laryngoscope 102, 395–399.

    PubMed  Google Scholar 

  • WEBSTER, D. B. (1983a) A critical period during postnatal auditory development of mice. Int. J. Pediatr. Otorhinolaryngol. 6, 107–118.

    PubMed  Google Scholar 

  • WEBSTER, D. B. (1985) The spiral ganglion and cochlear nuclei of deafness mice. 18, 19–27.

    Google Scholar 

  • WEBSTER, D. B., SOBIN, A. & ANNIKO, M. (1986) Incomplete maturation of Brainstem auditory nuclei in genetically induced early postnatal cochlear degeneration. Acta Otolaryngol. 101, 429–438.

    PubMed  Google Scholar 

  • WEBSTER, D. B. & TRUNE, D. R. (1982) Cochlear nuclear complex of mice. Am. J. Anat. 163, 103–130.

    PubMed  Google Scholar 

  • WEBSTER, D. B. & WEBSTER, M. (1979) Effects of neonatal conductive hearing loss on brainstem auditory nuclei. Ann. Otol. Rhinol. Laryngol. 88, 684–688.

    PubMed  Google Scholar 

  • WEBSTER, M. & WEBSTER, D. B. (1981) Spiral ganglion neuron loss following organ of Corti loss: A quantitative study. Brain Res. 212, 17–30.

    PubMed  Google Scholar 

  • WEST, C. D. & HARRISON, J. M. (1973) Transneuronal cell atrophy in the deaf white cat. J. Comp. Neurol. 151, 377–398.

    PubMed  Google Scholar 

  • WIESEL, T. N. & HUBEL, D. H. (1963) Effects of visual deprivation on morphology and physiology of cells in the cat's lateral geniculate body. J. Neurophysiol. 26, 973–993.

    Google Scholar 

  • WILLARD, F. H. & RYUGO, D. K. (1983) Anatomy of the central auditory system. In The Auditory Psychobiology of the Mouse (edited by Willott, J. F.) pp. 201–304. Springfield, IL: Charles C. Thomas.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Ryugo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.J., Cahill, H.B. & Ryugo, D.K. Effects of congenital deafness in the cochlear nuclei of Shaker-2 mice: An ultrastructural analysis of synapse morphology in the endbulbs of Held. J Neurocytol 32, 229–243 (2003). https://doi.org/10.1023/B:NEUR.0000010082.99874.14

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEUR.0000010082.99874.14

Keywords

Navigation